Vol. 97
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-29
NLOS Target Localization with an L-Band UWB Radar via Grid Matching
By
Progress In Electromagnetics Research M, Vol. 97, 45-56, 2020
Abstract
This paper considers utilizing radar multipath returns to locate a target in an L-shaped non-line of sight (NLOS) environment and proposes a NLOS target localization algorithm based on grid matching. The algorithm first establishes a multipath propagation model based on real data from an L-band single-input single-output (SISO) ultra-wideband (UWB) radar. Then, it calculates the times of arrival (TOAs) of each grid based on the multipath propagation model and matches the grid which is closest to the measured TOAs of round-trip multipath returns. Both simulation and real-data experiment results validate the effectiveness of the multipath model and the proposed localization algorithm.
Citation
Huagui Du, Chongyi Fan, Zhen Chen, Chun Cao, and Xiaotao Huang, "NLOS Target Localization with an L-Band UWB Radar via Grid Matching," Progress In Electromagnetics Research M, Vol. 97, 45-56, 2020.
doi:10.2528/PIERM20071801
References

1. Deiana, D., A. S. Kossen, and W. L. van Rossum, "Multipath exploitation in an urban environment using a MIMO surveillance radar," Proc. 11-th International Radar Sumposium, 1-4, Vilnius, Lithuania, 2010.

2. Setlur, P. and M. Amin, "Multipath model and exploitation in through-the-wall radar and urban sensing," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 10, 4021-4034, 2011.
doi:10.1109/TGRS.2011.2128331

3. Tahmoush, D., J. Silvious, and B. Bender, "Radar surveillance in urban environments," Proceedings of the IEEE International Radar Conference, 220-225, 2012.

4. O'connor, A. and P. Setlur, "Single-sensor RF emitter localization based on multipath exploitation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, No. 3, 1635-1651, 2015.
doi:10.1109/TAES.2015.120807

5. Linnehan, R., "Validating multipath responses of moving targets through urban environments," 2010 IEEE Radar Conference, 1036-1041, IEEE, 2010.
doi:10.1109/RADAR.2010.5494468

6. Setlur, P., T. Negihi, N. Devroye, and D. Erricolo, "Multipath exploitation in non-LOS urban synthetic aperture radar," IEEE J. Sel. Topics Signal Process, Vol. 8, No. 1, 137-152, 2014.
doi:10.1109/JSTSP.2013.2287185

7. Johansson, T., A. Orbom, A. Sume, et al. "Radar measurements of moving objects around corners in a realistic scene," Radar Sensor Technology, Vol. 9077, No. 3, 0277-786X, 2014.

8. Sume, A., M. Gustafsson, M. Herberthson, et al. "Radar detection of moving targets behind corners," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 6, 2259-2267, 2011.
doi:10.1109/TGRS.2010.2096471

9. Gustafsson, M., "Positioning of objects behind corners using X-band radar," Proc. 30th URSI Gen. Assem. Sci. Symp., 1-4, Istanbul, Turkey, 2011.

10. Zetik, R., M. Roding, and R. S. Thoma, "UWB localization of moving targets in shadowed regions," 6th European Conference on Antennas and Propagation, 1729-1732, Prague, 2012.

11. Johansson, T., A. Andersson, M. Gustafsson, et al. "Positioning of moving non-line-ofsight targets behind a corner," IEEE Radar Conference, 2016.

12. Rabaste, O., E. Colin-Koeniguer, et al. "Around-the-corner radar: Detection of a human being in non-line of sight," IET Radar, Sensor & Navigation, Vol. 9, No. 6, 660-668, 2015.
doi:10.1049/iet-rsn.2014.0337

13. Li, S., G. Cui, S. Guo, et al. "On the electromagnetic diffraction propagation model and applications," IEEE J. Sel. Top Appl. Earth Observations Remote Sensing, Vol. 13, 884-895, 2020.
doi:10.1109/JSTARS.2020.2974529

14. Linnehan, R. and J. Schindler, "Multistatic scattering from moving targets in multipath environments," IEEE Radar Conference, 1-6, Pasadena, CA, 2009.

15. Aubry, A., A. De Maio, G. Foglia, et al. "Diffuse multipath exploitation for adaptive radar detection," IEEE Transactions on Signal Processing, Vol. 63, No. 5, 1268-1281, 2015.
doi:10.1109/TSP.2014.2388439

16. Baranoski, E. J., Multipath exploitation radar industry day, presented at the Defense Advanced Research Projects Agency Strategic Technology Office, Arlington, VA, 2007.

17. Durek, J., Multipath exploitation radar data collection review, presented at the Defense Advanced Research Projects Agency Strategic Technology Office, Arlington, VA, 2009.

18. Zhao, Q., et al., "Millimeter wave radar detection of moving targets behind a corner," 2018 21st International Conference on Information Fusion (FUSION), IEEE, 2018.

19. Du, H., C. Fan, C. Cao, et al. "A novel NLOS target localization method with a synthetic bistatic MMW radar," 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, 1-5, Hangzhou, China, 2020.

20. Zetik, R., M. Eschrich, S. Jovanoska, et al. "Looking behind a corner using multipath-exploiting UWB radar," IEEE Trans. on Aerospace and Electronic Systems, Vol. 51, No. 3, 1916-1926, 2015.
doi:10.1109/TAES.2015.140303

21. Thai, K., O. Rabaste, et al. "GLRT particle filter for tracking NLOS target in around-the-corner radar," Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 3216-3220, AB, Canada, 2018.

22. Thai, K., O. Rabaste, J. Bosse, et al. "Around-the-corner radar: Detection and localization of a target in non-line of sight," 2017 IEEE Radar Conference (Radar Conf.), 2017.

23. Rabaste, O., et al., "Detection-localization algorithms in the around the-corner radar problem," IEEE Transactions on Aerospace and Electronic Systems, Vol. 55, No. 6, 2658-2673, 2019.
doi:10.1109/TAES.2019.2897031

24. Fan, S., Y. Wang, G. Cui, et al. "Moving target localization behind L-shaped corner with a UWB radar," 2019 IEEE Radar Conference (Radar Conf.), IEEE, 2019.

25. Guo, S., S. Li, G. Cui, et al. "MIMO radar localization of targets behind L-shaped corners," 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), 1-4, Hangzhou, China, 2020.

26. Setlur, P. and G. Smith, "Target localization with a single sensor via multipath exploitation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 3, 1996-2014, 2012.
doi:10.1109/TAES.2012.6237575

27. Di Vito, A. and G. Morreti, "Probability of false alarm in CA-CFAR device downstream from linear-law detector," Electron. Lett., Vol. 25, No. 25, 1692-1693, 1989.
doi:10.1049/el:19891131