Vol. 96
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-24
Applying Electromagnetic Field Analysis to Minimize the Earth Resistance on High Resistivity Soils
By
Progress In Electromagnetics Research M, Vol. 96, 157-167, 2020
Abstract
Different optimization strategies to reduce the earth resistance in a high resistivity soil are discussed in this work and illustrated with a practical example. Finite Element simulations reproducing real-world conditions in terms of structure design and soil profiles have been made to evaluate the improvements that should be adopted to minimize earth resistance. We analyze an example of an earthing system of an array of four identical telescopes installed on high resistivity (k­¢m order) soils with two different behaviors. In the first one, current dissipation occurs in an uniform soil. In the second one, a terrain with four layers of different resistivities is considered. This situation corresponds to a real world case of an observatory constructed in a volcanic terrain. It was found that the best strategy in each case differs: extend horizontal electrodes as far as possible from the foundation in the first case and combine these electrodes with buried vertical electrodes that connect with deep high conductive layers in the second. The results are discussed in terms of the achieved improvements depending on the modifications introduced in the main structure.
Citation
Silvia Ronda Peñacoba, Clara Oliver García, OIbar Martínez Vilchez, Patricia Márquez Paniagua, and Jose Miguel Miranda Pantoja, "Applying Electromagnetic Field Analysis to Minimize the Earth Resistance on High Resistivity Soils," Progress In Electromagnetics Research M, Vol. 96, 157-167, 2020.
doi:10.2528/PIERM20072303
References

1. International Electrotechnical Commission (IEC), , Protection against lightning — Part 1: General principles, IEC 62305-1, Ed 2.0 2010-12, 2010, https://webstore.iec.ch/preview/info iec62305-1%7Bed2.0%7Den.pdf.

2. International Electrotechnical Commission (IEC), , Protection against lightning — Part 2: Risk management, 2010, https://webstore.iec.ch/preview/info iec62305-2%7Bed2.0%7Den.pdf.

3. International Electrotecnical Commission, , Protection against lightning—Part 3: Physical damage to structures and life hazard, IEC 62305-3, 2010, https://webstore.iec.ch/publication/6795.

4. International Electrotecnical Commission "Protection against lightning — Part 4: Electrical and electronic systems within structures, IEC 62305-4,", 2010, https://webstore.iec.ch/searchform&q=IEC 62305-4.

5. ITC-BT-18, Ministerio de Ciencia y Tecnologia, 2018.

6. Ueng, T. T.-S., Y.-C. Lin, J.-C. Chang, and C.-K. Kuan, The ground testing of tps ground system, 2011, https://accelconf.web.cern.ch/ipac2011/papers/tups062.pdf (accessed: Jun. 06, 2020).

7. British Standards Institution, Code of practice for protective earthing of electrical installations BS 7430:2011, No. 1, 1–96, 2011, https://global.ihs.com/doc detail.cfm?document name=BS 7430&item s key=00131083&csf=TIA (accessed: Jun. 06, 2020).

8. Military handbook grounding, bonding and shielding for electronic equipments and facilities Volume I of II Volumes basic Theory, 1982, https://www.wbdg.org/FFC/NAVFAC/DMMHNAV/hdbk419a vol1.pdf (accessed: Jun. 06, 2020).

9. Electric Engineer Portal, Measurements and calculations of Earth electrode systems, https://electrical-engineering-portal.com/earth-electrode-systems#types-earth-electrodes (accessed: Jun. 06, 2020)..

10. IEEE Std 80 Guide for Safety In AC Substation Grounding, Vol. 2000, Feb. 2000.

11. Okyere, P. Y. and G. Eduful, "Reducing Earth electrode resistance by replacing soil in critical resistance area," J. Mod. Eng., 2006.

12. "IEC 62561-7:2018 Lightning protection system components (LPSC) — Part 7: Requirements for earthing enhancing compound,", International Standard, 2018, https://webstore.iec.ch/publication/33885 (accessed: Jun. 06, 2020).

13. Lindsay, T., "National electrical grounding research project, technical report,", 2007, https://www.nfpa.org/-/media/Files/News-and-Research/Archived-reports/negrpfinalreport.ashx ?la=en.

14. LST — Cherenkov telescope array, https://www.cta-observatory.org/project/technology/lst/ (accessed: Jun. 15, 2020).

15. Cortina, J. and M. Teshima, Status of the Cherenkov telescope array's large size telescopes, 2015, http://cta-observatory.org (accessed: Jun. 15, 2020).

16. Sabiha, N. A. and N. I. Elkalashy, Evaluation of grounding system design for wind farm using COMSOL, 2018, http://www.ripublication.com (accessed: Jun. 26, 2020).

17. Malanda, S. C., I. E. Davidson, E. Singh, and E. Buraimoh, "Analysis of soil resistivity and its impact on grounding systems design," 2018 IEEE PES/IAS PowerAfrica, PowerAfrica 2018, 324-329, Nov. 2018.
doi:10.6028/bulletin.282

18. Wenner, F., "A Method of measuring Earth resistivity," Bull. Bur. Stand., Vol. 12, 469-478, 1916.
doi:10.4236/jemaa.2020.127008

19. Ronda, S., O. Martinez, C. Oliver, P. Marquez, and J. M. Miranda, "Finite element analysis and experimental characterization of soil electrical resistivity at El roque de los muchachos observatory," Journal of Electromagnetic Analysis and Applications, Vol. 12, No. 7, 89-102, 2020.

20. De A. de Canarias, I. LIC-15-034: Construction of foundation of Telescope LST1, 10, Plataforma de Contrataci´on del Estado (Spain), 2015, https://contrataciondelestado.es/wps/wcm/connect/8e64f971-f3eb-41d1-a206-edca7ec9b590/DOC CD2015-229760.pdf?MOD=AJPERES (accessed: Jun. 15, 2020).

21. Ma, J., T. Del Pino, and S. P. Martı, NTP-1.084: Prevencion de riesgos laborales originados por la caıda de rayos, 2017.

22. UNE 21186:2011 Proteccion contra el rayo: Pararrayos con dispo, 2011, https://www.aenor.com/normas-y-libros/buscador-de-normas/une/?Tipo=N&c=N0048559 (accessed: Jun. 25, 2020).
doi:10.4018/978-1-5225-3853-0

23. El-Sayed Gouda, O., Design Parameters of Electrical Network Grounding Systems, IGI Global, 2018.

24. Zeng, R., J. He, Z. Wang, Y. Gao, W. Sun, and Q. Su, "Analysis on influence of long vertical grounding electrodes on grounding system for substation," PowerCon 2000 — 2000 International Conference on Power System Technology, Proceedings, Vol. 3, 1475-1480, 2000.
doi:10.4018/978-1-5225-3853-0

25. El-Sayed Gouda, O., Design Parameters of Electrical Network Grounding Systems, IGI Global, 2018.
doi:10.1016/j.ijepes.2012.10.058

26. Lim, S. C., C. Gomes, and M. Z. A. Ab Kadir, "Electrical earthing in troubled environment," Int. J. Electr. Power Energy Syst., Vol. 47, No. 1, 117-128, May 2013.

27. Zeng, R., J. He, Z. Wang, Y. Gao, W. Sun, and Q. Su, "Analysis on influence of long vertical grounding electrodes on grounding system for substation," PowerCon 2000 — 2000 International Conference on Power System Technology, Proceedings, Vol. 3, 1475-1480, 2000.

28. Malanda, S. C., I. E. Davidson, E. Singh, and E. Buraimoh, "Analysis of soil resistivity and its impact on grounding systems design," 2018 IEEE PES/IAS PowerAfrica, PowerAfrica 2018, 324-329, Nov. 2018.
doi:10.1201/9780429329357

29. Mitolo, M., Analysis of Grounding and Bounding Systems, CRC Press, 2020.