Vol. 100
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-12-27
A Novel Analytical Method Suitable for Coupled Electromagnetic Field of Circuit
By
Progress In Electromagnetics Research M, Vol. 100, 35-50, 2021
Abstract
A novel analytical method suitable for coupled electromagnetic field of a circuit is proposed in this paper. In a high frequency circuit and high-frequency converter, skin effects are obvious, and the variations in resistance and inductance values depend on frequency. In addition, the voltage and current distribution changes of a high frequency circuit generated with a high-frequency converter during dynamic switching process are complicated and depend on time. A novel analytical method suitable for coupled electromagnetic field of circuit in parameter optimization design of high-frequency circuit and high-frequency converter is proposed in this paper. The proposed method considers the influence of skin effect and coupled electromagnetic field on parameter variation simultaneously. According to the law between parameter variation and line length, the calculation process of parameter optimization will be simpler and more effective.
Citation
Rui Zhang Yibo Wang Honghua Xu , "A Novel Analytical Method Suitable for Coupled Electromagnetic Field of Circuit," Progress In Electromagnetics Research M, Vol. 100, 35-50, 2021.
doi:10.2528/PIERM20072906
http://www.jpier.org/PIERM/pier.php?paper=20072906
References

1. Giacoletto, L. J., "Frequency and time-domain analysis of skin effects," IEEE Transactions on Magnetics, Vol. 32, No. 1, 1996.
doi:10.1109/20.477574

2. Stoll, R. L., Analysis of Eddy Currents, Clarendon Press, Oxford, U.K., 1974.

3. Deswal, D. and F. de Leon, "Generalized circuit model for eddy current effects in multi-winding transformers," IEEE Transactions on Power Delivery, Vol. 34, No. 2, 2019.
doi:10.1109/TPWRD.2019.2896326

4. Kakhki, M. T., J. Cros, and P. Viarouge, "New approach for accurate prediction of eddy current losses in laminated material in the presence of skin effect with 2-D FEA," IEEE Transactions on Magnetics, Vol. 52, No. 3, 2016.

5. Lee, J.-H., N. M. Iyer, and H. Zhang, "Influence of skin effect on the current distribution of grounded-gate NMOS device," IEEE Electron Device Letters, Vol. 38, No. 11, 2017.

6. Oh, K. S., "Accurate transient simulation of transmission lines with the skin effect," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 19, No. 3, 2000.
doi:10.1109/TCAD.2008.915533

7. Ney, M. M. and G. I. Costache, "Transient striction and skin effects on voltage drop across flat conductors," Canadian Journal of Electrical and Computer Engineering, Vol. 18, No. 4, 1993.
doi:10.1109/CJECE.1993.6593947

8. Coperich, K. M., A. E. Ruehli, and A. Cangellaris, "Enhanced skin effect for Partial-Element Equivalent-Circuit (PEEC) models," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 9, 2000.
doi:10.1109/22.868992

9. Haas, H. and F. Schmoellebeck, "A finite-element method for transient skin effect in 2-D loaded multiconductor systems," IEEE Transactions on Magnetics, Vol. 24, No. 1, 1988.
doi:10.1109/20.43884

10. Vu Dinh, T., B. Cabon, and J. Chilo, "New skin-effect equivalent circuit," Electronics Letters, Vol. 26, No. 19, 1990.
doi:10.1049/el:19901015

11. Sato, K., N. Shinohara, and T. Naito, "A new transient analysis method of the electrical circuit containing with Skin Effect Element (SIC)," IEEE Transactions on Magnetics, Vol. 26, No. 2, 1990.
doi:10.1109/20.106486

12. Ney, M. M., "Striction and skin effects on the internal impedance value of flat conductors," IEEE Transactions on Electromagnetic Compatibility, Vol. 33, No. 4, 1991.
doi:10.1109/15.99113

13. Morisco, D. P., S. Kurz, H. Rapp, and A. Möckel, "A hybrid modeling approach for current diffusion in rectangular conductors," IEEE Transactions on Magnetics, Vol. 55, No. 9, 2019.
doi:10.1109/TMAG.2019.2914006

14. Bai, F., Z. Niu, and D. Zhou, "Modeling and simulation of near-field radiation of power converters," Journal of System Simulation, Vol. 18, No. 2, 2006.