Vol. 98
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-10-27
A CPW-Fed Dual-Band MIMO Antenna with Enhanced Isolation for 5G Application
By
Progress In Electromagnetics Research M, Vol. 98, 11-20, 2020
Abstract
In this paper, a dual-band Multiple Input Multiple Output (MIMO) antenna for fifth-generation (5G) band (3.3-3.6 GHz and 4.8-5.0 GHz) is presented. The proposed MIMO antenna fed by coplanar waveguide (CPW) contains two symmetric antenna elements with two inverted L-shaped stubs. High isolation is successfully acquired by adopting a double-Y-shaped stub and partial ground plane. To obtain compactness, the antenna printed on an FR4 substrate has two triangle corners cut off. To study the performance, the antenna is simulated by Ansoft HFSS 13.0, and then fabricated and tested. The measurement results demonstrate that the antenna has achieved impedance bandwidths (S11 < -10 dB) of 790 MHz (3.08-3.87 GHz) and 880 MHz (4.7-5.58 GHz) with fractional bandwidths of 22.7% and 15.8% respectively, which covers 3.45/4.9 GHz 5G bands. Meanwhile, the measurement results exhibit an enhanced isolation more than 20 dB, a low envelope correlation coefficient (ECC) below 0.001, an average gain better than 2 dB and a stable radiation pattern within operation bands. In addition, the parameters including efficiency, DG, CCL, MEG and TARC are also analysed. The simulated and measured results indicate that the proposed MIMO antenna can be applied to 5G communication system.
Citation
Chengzhu Du Zhuolin Zhao , "A CPW-Fed Dual-Band MIMO Antenna with Enhanced Isolation for 5G Application," Progress In Electromagnetics Research M, Vol. 98, 11-20, 2020.
doi:10.2528/PIERM20081203
http://www.jpier.org/PIERM/pier.php?paper=20081203
References

1. Zhu, Y., Y. Chen, and S. Yang, "Integration of 5G rectangular MIMO antenna array and GSM antenna for dual-band base station applications," IEEE Access, Vol. 8, 63175-63187, 2020.
doi:10.1109/ACCESS.2020.2984246

2. Ozdemir, M. and E. Arvas, "Dynamics of spatial correlation and implications on MIMO systems," IEEE Commun. Mag., Vol. 42, No. 6, S14-S19, Jun. 2004.
doi:10.1109/MCOM.2004.1304227

3. Li, Q., M. Abdullah, and X. Chen, "Defected ground structure loaded with meandered lines for decoupling of dual-band antenna," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 13, 1764-1775, 2019.
doi:10.1080/09205071.2019.1643261

4. Deng, J. Y., Z. J. Wang, J. Y. Li, and L. X. Gao, "A dual-band MIMO antenna decoupled by a meandering line resonator for WLAN applications," Microw. Opt. Technol. Lett., Vol. 60, No. 3, 759-765, 2018.
doi:10.1002/mop.31049

5. Deng, J., J. Li, and L. Zhao, "A dual-band inverted-F MIMO antenna with enhanced isolation for WLAN application," IEEE Antenna Wireless Propag. Lett., Vol. 16, 2270-2273, 2017.
doi:10.1109/LAWP.2017.2713986

6. Shen, D. L., L. Zhang, Y. C. Jiao, and Y. Yan, "Dual-element antenna with high isolation operating at the WLAN bands," Microw. Opt. Technol. Lett., Vol. 61, No. 10, 2323-2328, 2019.
doi:10.1002/mop.31901

7. Liu, P., D. Sun, P. Wang, and P. Gao, "Design of a dual-band MIMO antenna with high isolation for WLAN applications," Progress In Electromagnetics Research Letters, Vol. 74, 23-30, 2018.

8. Luo, C., J. Hong, and M. Amin, "Mutual coupling reduction for dual-band MIMO antenna with simple structure," Radioengineering, Vol. 26, 51-56, 2017.
doi:10.13164/re.2017.0051

9. Nandi, S. and A. Mohan, "A compact dual-band MIMO slot antenna for WLAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2457-2460, 2017.
doi:10.1109/LAWP.2017.2723927

10. Qin, H. and Y. Liu, "Compact dual-band MIMO antenna with high port isolation for WLAN applications," Progress In Electromagnetics Research C, Vol. 49, 97-104, 2014.
doi:10.2528/PIERC14021901

11. Nirmal, P., A. Nandgaonkar, S. Nalbalwar, and R. Gupta, "A compact dual band MIMO antenna with improved isolation for WI-MAX and WLAN applications," Progress In Electromagnetics Research M, Vol. 68, 69-77, 2018.
doi:10.2528/PIERM18033104

12. Pasumarthi, S. R., J. B. Kamili, and M. P. Avala, "Design of dual band MIMO antenna with improved isolation," Microw. Opt. Technol. Lett., Vol. 61, No. 6, 1-5, 2019.

13. Dkiouak, A., A. Zakriti, M. E. Ouahabi, and A. Mchbal, "Design of two element Wi-MAX/WLAN MIMO antenna with improved isolation using a Short Stub-Loaded Resonator (SSLR)," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 9, 1268-1282, 2020.

14. Dkiouak, A., A. Zakriti, and M. E. Ouahabi, "Design of a compact dual-band MIMO antenna with high isolation for WLAN and X-band satellite by using orthogonal polarization," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 9, 1254-1267, 2018.

15. Debnath, P., A. Karmakar, A. Saha, and S. Huda, "UWB MIMO slot antenna with Minkowski fractal shaped isolators for isolation enhancement," Progress In Electromagnetics Research M, Vol. 75, 69-78, 2018.

16. Ikram, M., Muhammad, N. Nguyen-Trong, and A. Abbosh, "Realization of a tapered slot array as both decoupling and radiating structure for 4G/5G wireless devices," IEEE Access, Vol. 7, 159112-159118, 2019.

17. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electron. Lett., Vol. 39, No. 9, 705-707, 2003.

18. Kumar, A., A. Q. Ansari, B. K. Kanaujia, J. Kishor, and N. Tewari, "Design of triple-band MIMO antenna with one band-notched characteristic," Progress In Electromagnetics Research C, Vol. 86, 41-53, 2018.

19. Kumar, A., A. Q. Ansari, B. K. Kanaujia, and J. Kishor, "High isolation compact four-port MIMO antenna loaded with CSRR for multiband applications," Frequenz, Vol. 72, No. 9–10, 415-427, 2018.

20. Biswas, A. K. and U. Chakraborty, "Investigation on decoupling of wide band wearable multipleinput multiple-output antenna elements using microstrip neutralization line," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 9, 1-11, 2019.