Vol. 97

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-10-08

Robust Adaptive Beamforming Based on Interference-Plus-Noise Covariance Matrix Reconstruction Method

By Yang Bi, Xi'an Feng, and Tuo Guo
Progress In Electromagnetics Research M, Vol. 97, 87-96, 2020
doi:10.2528/PIERM20082003

Abstract

Aiming at the problem of look direction error in the desired signal, a novel robust adaptive beamforming method based on covariance matrix reconstruction is proposed. Firstly, the Sparse Bayesian Learning (SBL) is performed to acquire the true signal direction and the spatial spectrum simultaneously. Secondly, the SBL spatial spectrum is used to reconstruct the interference-plus-noise covariance matrix. Compared with other reconstruction algorithms, this approach can realize the position estimation without any optimization procedures. Theoretical analysis, simulation results and water pool experiments demonstrate the effectiveness and robustness of the propose algorithm.

Citation


Yang Bi, Xi'an Feng, and Tuo Guo, "Robust Adaptive Beamforming Based on Interference-Plus-Noise Covariance Matrix Reconstruction Method," Progress In Electromagnetics Research M, Vol. 97, 87-96, 2020.
doi:10.2528/PIERM20082003
http://www.jpier.org/PIERM/pier.php?paper=20082003

References


    1. Gu, Y. and A. Leshem, "Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation," IEEE Trans. Signal Process., Vol. 60, No. 7, 3881-3885, 2012.
    doi:10.1109/TSP.2012.2194289

    2. Huang, L., J. Zhang, X. Xu, and Z. Ye, "Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method," IEEE Trans. Signal Process., Vol. 63, No. 7, 1643-1650, 2015.
    doi:10.1109/TSP.2015.2396002

    3. Gu, Y., N. A. Goodman, S. Hong, and Y. Li, "Robust adaptive beamforming based on interference covariance matrix sparse reconstruction," Signal Processing, Vol. 96, Part B, 375-381, 2014.
    doi:10.1016/j.sigpro.2013.10.009

    4. Zhang, Z., W. Liu, W. Leng, A. Wang, and H. Shi, "Interference-plus-noise covariance natrix reconstruction via spatial power spectrum sampling for robust adaptive beamforming," IEEE Signal Process. Lett., Vol. 23, No. 1, 121-125, 2015.
    doi:10.1109/LSP.2015.2504954

    5. Zheng, Z., Y. Zheng, W. Wang, and H. Zhang, "Covariance matrix reconstruction with interference steering vector and power estimation for robust adaptive beamforming," IEEE Transactions on Vehicular Technology, Vol. 67, No. 9, 8495-8503, 2018.
    doi:10.1109/TVT.2018.2849646

    6. Zhu, X., X. Xu, and Z. Ye, "Robust adaptive beamforming via subspace for interference covariance matrix reconstruction," Signal Processing, Vol. 167, 107289.1-107289.10, 2020.

    7. Huang, J., H. Su, and Y. Yang, "Robust adaptive beamforming method based on desired signal steering vector estimation and interference-plus-noise covariance matrix reconstruction," The Journal of Engineering, Vol. 2019, No. 21, 7683-7686, 2019.
    doi:10.1049/joe.2019.0739

    8. Trees, H. L., Detection, Estimation, and Modulation Theory, Optimum Array Processing, Wiley-Interscience, New York, 2002.

    9. Gerstoft, P., et al., "Multisnapshot sparse bayesian learning for DOA," IEEE Signal Process. Lett., Vol. 23, No. 10, 1469-1473, 2016.
    doi:10.1109/LSP.2016.2598550

    10. Mecklenbrauker, C. F., et al., "Sequential Bayesian sparse signal reconstruction using array data," IEEE Trans. Signal Process., Vol. 61, No. 24, 6344-6354, 2013.
    doi:10.1109/TSP.2013.2282919

    11. Giri, R. and B. Rao, "Type I and type II Bayesian methods for sparse signal recovery using scale mixtures," IEEE Trans. Signal Process., Vol. 64, No. 13, 3418-3428, 2016.
    doi:10.1109/TSP.2016.2546231

    12. Raj, A. G. and J. H. McClellan, "Single snapshot super-resolution DOA estimation for arbitrary array geometries," IEEE Signal Process. Lett., Vol. 26, No. 1, 119-123, 2019.
    doi:10.1109/LSP.2018.2881927

    13. Zhang, Z. and B. D. Rao, "Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning," IEEE J. Sel. Topics Signal Process., Vol. 5, No. 5, 912-926, 2011.
    doi:10.1109/JSTSP.2011.2159773

    14. Liu, Z.-M., Z.-T. Huang, and Y.-Y. Zhou, "An efficient maximum likelihood method for direction-of-arrival estimation via sparse Bayesian learning," IEEE Trans. Wireless Commun., Vol. 11, No. 10, 1-11, 2012.
    doi:10.1109/TWC.2012.090312.111912

    15. Zhang, J. A., Z. Chen, P. Cheng, and X. Huang, "Multiple-measurement vector based implementation for single-measurement vector sparse Bayesian learning with reduced complexity," Signal Processing, Vol. 118, 153-158, 2016.
    doi:10.1016/j.sigpro.2015.06.020

    16. Zhang, Z., et al., "Spatiotemporal sparse Bayesian learning with applications to compressed sensing of multichannel physiological signals," IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 22, No. 6, 1186-1197, 2014.
    doi:10.1109/TNSRE.2014.2319334

    17. Jaffer, A. G., "Maximum likelihood direction finding of stochastic sources: A separable solution," Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2893-2896, 2002.

    18. Stoica, P. and R. Moses, Introduction to Spectral Analysis, Prentice Hall, New Jersey, 1997.