Vol. 100
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-01-14
Prediction of Electric Field in the Loaded Cavity Based on the Theory of Reverberation Chambers
By
Progress In Electromagnetics Research M, Vol. 100, 117-125, 2021
Abstract
The shielding cavity loaded with electronic equipment inside has a high Q value and is in overmode at relatively high frequency as a reverberation chamber (RC), but it does not have stirrers or paddles. However, the electromagnetic environment in the cavity is similar to that in the reverberation chamber working in frequency stirring mode or source stirring mode because of the certain bandwidth of the electronic equipment and the movement of the portable electronic equipment. Therefore, the electric field in the cavity can be predicted based on the theory of reverberation chamber. In order to predict the electric field in a given shielding cavity after loading additional electronic equipment, the determination method of the Q value of the cavity and the absorption cross section (ACS) of the electronic equipment, the influence of the ACS on the Q value of the cavity, and the relationship between the Q value and electric field are analyzed Firstly, the ACS and radiated emission power of the loading electronic equipment are measured in the RC. Then, the Q value of the cavity with the electronic equipment loaded inside is calculated by the known Q value of the cavity without the electronic equipment and the ACS of the electronic equipment. Finally, the electric field in the cavity loaded with electronic equipment is estimated by using the calculated Q value of the loaded cavity and the measured radiated emission power of the electronic equipment. The experimental results verify the effectiveness of the prediction method.
Citation
Yan Chen Xiang Zhou Jingkang Ji Shouyang Zhai Dan Chen , "Prediction of Electric Field in the Loaded Cavity Based on the Theory of Reverberation Chambers," Progress In Electromagnetics Research M, Vol. 100, 117-125, 2021.
doi:10.2528/PIERM20090902
http://www.jpier.org/PIERM/pier.php?paper=20090902
References

1. Siah, E. S., K. Sertel, J. L. Volakis, V. V. Liepa, and R. Wiese, "Coupling studies and shielding techniques for electromagnetic penetration through apertures on complex cavities and vehicular platforms," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, No. 2, 245-256, 2003.
doi:10.1109/TEMC.2003.810814

2. Hill, D. A., Electromagnetic Fields in Cavities: Deterministic and Statistical Theories, Wiley-IEEE Press, New Jersey, 2009.
doi:10.1002/9780470495056.app5

3. Tait, G. B., C. E. Hager Iv, T. T. Baseler, and M. B. Slocum, "Ambient power density and electric field from broadband wireless emissions in a reverberant space," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 1, 307-313, 2016.
doi:10.1109/TEMC.2015.2503925

4. Gros, J. B., O. Legrand, F. Mortessagne, E. Richalot, and K. Selemani, "Universal behaviour of a wave chaos based electromagnetic reverberation chamber," Wave Motion, Vol. 51, No. 4, 664-672, 2014.
doi:10.1016/j.wavemoti.2013.09.006

5. Romero, S. F., G. Gutierrez, and I. Gonzalez, "Universal behaviour of a wave chaos based electromagnetic reverberation chamber," Prediction of the Maximum Electric Field Level Inside a Metallic Cavity Using a Quality Factor Estimation, Vol. 28, No. 12, 1468-1477, 2014.

6. Gradoni, G., D. Micheli, F. Moglie, and V. Mariani Primiani, "Absorbing cross section in reverberation chamber: Experimental and numerical results," Progress In Electromagnetics Research B, Vol. 45, 187-202, 2012.
doi:10.2528/PIERB12090801

7. Gifuni, A., H. Khenouchi, and G. Schirinzi, "Performance of the reflectivity measurement in a reverberation chamber," Progress In Electromagnetics Research, Vol. 154, 87-100, 2015.
doi:10.2528/PIER15072903

8. Yu, S. P. and C. F. Bunting, "Statistical investigation of frequency-stirred reverberation chambers," 2003 IEEE Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No. 03CH37446), Vol. 1, 155-159, 2003.

9. Zhou, Z., P. Hu, X. Zhou, J. Ji, and Q. Zhou, "Performance evaluation of oscillating wall stirrer in reverberation chamber using correlation matrix method and modes within Q-bandwidth," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 6, 2669-2678, 2020, doi: 10.1109/TEMC.2020.2983981.
doi:10.1109/TEMC.2020.2983981

10. West, J. C., J. N. Dixon, N. Nourshamsi, D. K. Das, and C. F. Bunting, "Best practices in measuring the quality factor of a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 3, 564-571, 2018.
doi:10.1109/TEMC.2017.2753724

11. Ji, J., X. Zhou, and P. Hu, "Frequency-dependent oscillating wall stirrer for measurement of quality factor in a reverberation chamber," 2019 IEEE International Conference on Computation, Communication and Engineering (ICCCE), 142-145, 2019.
doi:10.1109/ICCCE48422.2019.9010772

12. West, J. C., V. Rajamani, and C. F. Bunting, "Frequency- and time-domain measurement of reverberation chamber Q: An in-silico analysis," 2016 IEEE International Symposium on Electromagnetic Compatibility, 7-12, 2016.
doi:10.1109/ISEMC.2016.7571566

13. Hill, D. A., M. T. Ma, A. R. Ondrejka, B. F. Riddle, M. L. Crawford, and R. T. Johnk, "Aperture excitation of electrically large, lossy cavities," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, No. 3, 169-178, 1994.
doi:10.1109/15.305461

14. Arnaut, L. R., "Measurement uncertainty in reverberation chambers,", Report TEQ 2, Ed, 2.0, National Physical Laboratory (UK), 2008.

15. IEC 61000-4-21, "Electromagnetic compatibility (EMC) - Part 4-21: Testing and measurement techniques - Reverberation chamber test methods,", International Electromagnetic Commission (IEC), 2011.