Vol. 98
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-11-04
An Effective Sparse Approximate Inverse Preconditioner for Multilevel Fast Multipole Algorithm
By
Progress In Electromagnetics Research M, Vol. 98, 67-75, 2020
Abstract
In the iterative solution of the matrix equation arising from the multilevel fast multipole algorithm (MLFMA), sparse approximate inverse (SAI) preconditioner is widely employed to improve convergence property. In this paper, based on the geometric information of nearby basis functions pairs and finer octree grouping scheme, a new sparse pattern selecting strategy for SAI is proposed to enhance robustness and efficiency. Compared to the conventional selecting strategies, the proposed strategy has only one variable parameter instructing the constructing time and memory usage, which is more user friendly. Numerical results show that the proposed strategy can make use of the non-zero entries of near-field matrix in MLFMA more effectively and elaborately without compromising the numerical accuracy and the natural parallelization of SAI.
Citation
Ping Yang Jinbo Liu Zengrui Li , "An Effective Sparse Approximate Inverse Preconditioner for Multilevel Fast Multipole Algorithm," Progress In Electromagnetics Research M, Vol. 98, 67-75, 2020.
doi:10.2528/PIERM20091105
http://www.jpier.org/PIERM/pier.php?paper=20091105
References

1. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, MA, 2001.

2. Harrington, R. F., Field Computation by Moment Methods, MacMillan, New York, 1968.

3. Lee, J., J. Zhang, and C. C. Lu, "Incomplete LU preconditioning for large scale dense complex linear systems from electromagnetic wave scattering problems," Journal of Computational Physics, Vol. 185, No. 1, 158-175, Feb. 2003.
doi:10.1016/S0021-9991(02)00052-9

4. Malas, T. and L. Gurel, "Incomplete LU preconditioning with the multilevel fast multipole algorithm for electromagnetic scattering," SIAM Journal on Scientific Computing, Vol. 29, No. 4, 1476-1494, 2007.
doi:10.1137/060659107

5. Saad, Y. and J. Zhang, "Enhanced multi-level block ILU preconditioning strategies for general sparse linear systems," Journal of Computational and Applied Mathematics, Vol. 130, No. 1, 99-118, 2001.
doi:10.1016/S0377-0427(99)00388-X

6. Lee, J., J. Zhang, and C. C. Lu, "Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics," IEEE Trans. Antennas Propag., Vol. 52, No. 9, 2277-2287, Sep. 2004.
doi:10.1109/TAP.2004.834084

7. Rui, P. L. and R. S. Chen, "An efficient sparse approximate inverse preconditioning for FMM implementation," Microwave Opt. Technol. Lett., Vol. 49, No. 7, 1746-1750, Jul. 2007.
doi:10.1002/mop.22538

8. Carpentieri, B., I. S. Duff, and L. Giraud, "Sparse pattern selection strategies for robust Frobenius-norm minimization preconditioners in electromagnetism," Numer. Linear Algebra Appl., Vol. 7, 667-685, 2000.
doi:10.1002/1099-1506(200010/12)7:7/8<667::AID-NLA218>3.0.CO;2-X

9. Malas, T. and L. Gurel, "Accelerating the multilevel fast multipole algorithm with the sparse-approximate-inverse (SAI) preconditioning," SIAM Journal on Scientific Computing, Vol. 31, No. 3, 1968-1984, 2009.
doi:10.1137/070711098

10. Carpentieri, B., "Algebraic preconditioners for the Fast Multipole Method in electromagnetic scattering analysis from large structures: Trends and problems," Electronic Journey of Boundary Elements, Vol. 7, No. 1, 13-49, Mar. 2009.

11. Delgado, C., E. Garcıa, A. Somolinos, and M. F. Catedra, "Hybrid parallelisation scheme for the application of distributed near-field sparse approximate inverse preconditioners on high-performance computing clusters," IET Microw. Antennas Propag., Vol. 14, No. 4, 320-328, Mar. 2020.
doi:10.1049/iet-map.2019.0789

12. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 5, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

13. Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd Ed., SIAM, Philadelphia, 2003.
doi:10.1137/1.9780898718003