Vol. 98
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-11-16
Thermal Modeling and Analysis of Hybrid Excitation Double Stator Bearingless Switched Reluctance Motor
By
Progress In Electromagnetics Research M, Vol. 98, 137-146, 2020
Abstract
Bearingless switched reluctance motor can be used in aerospace and flywheel energy storage industry. Taking a 6/4/4 hybrid excitation double stator bearingless switched reluctance motor as an example, the motor adopts an E-block structure on the outer stator and is excited by permanent magnet and current. The loss calculation and thermal analysis of the motor is carried out by using finite element method. The result shows temperature distributions of the motor under natural air-cooling condition. The temperature change under different operating status is analyzed. Finally, the temperature change and transient temperature curve of each part of the motor are obtained through simulation, and the motor can run stably.
Citation
Qianwen Xiang Jianrong Li Ye Yuan Kunhua Chen , "Thermal Modeling and Analysis of Hybrid Excitation Double Stator Bearingless Switched Reluctance Motor," Progress In Electromagnetics Research M, Vol. 98, 137-146, 2020.
doi:10.2528/PIERM20100103
http://www.jpier.org/PIERM/pier.php?paper=20100103
References

1. Xue, B., H. Wang, and J. Bao, "Design of novel 12/14 bearingless permanent biased switched reluctance motor," IEEE International Conference on Electrical Machines and Systems, 2655-2660, Oct. 2014.

2. Wang, H., B. Xue, and S. Tang, "New type 12/14 bearingless switched reluctance motor with double windings," IET Electric Power Applications, Vol. 9, No. 7, 478-485, Aug. 2015.
doi:10.1049/iet-epa.2014.0319

3. Peng, W., D. Lee, F. Zhang, and J. Ahn, "Design and characteristic analysis of a novel bearingless SRM with double stator," 2011 International Conference on Electrical Machines and Systems, 1-6, Beijing, 2011.

4. Yuan, Y., Y. Sun, and Y. Huang, "Radial force dynamic current compensation method of single winding bearingless flywheel motor," IET Power Electronics, Vol. 8, No. 7, 1224-1229, Jul. 2019.
doi:10.1049/iet-pel.2014.0502

5. Kusumi, T., K. Kobayashi, T. Hara, K. Umetani, and E. Hiraki, "Core loss modeling based on equivalent circuit for switched reluctance motors," 2019 IEEE International Conference on Industrial Technology (ICIT), 1743-1748, Melbourne, Australia, 2019.

6. Allirani, S., H. Vidhya, T. Aishwarya, T. Kiruthika, and V. Kowsalya, "“Design and performance analysis of switched reluctance motor using ANSYS Maxwell," 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), 1427-1432, Tirunelveli, 2018.

7. Narita, K., et al., "An accurate iron loss evaluation method based on finite element analysis for switched reluctance motors," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 4413-4417, Montreal, QC, 2015.

8. Huang, X. and X. Wang, "Switched reluctance motor loss optimization based on finite element method," 2016 International Symposium on Computer, Consumer and Control (IS3C), 567-570, Xi'an, 2016.
doi:10.1109/IS3C.2016.146

9. Siadatan, A., S. H. Mirimani, M. Shamei, and T. Khalili, "Thermal stability analysis of 6/4 switch reluctance motor using finite element method," 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 382-387, Anacapri, 2016.
doi:10.1109/SPEEDAM.2016.7525809

10. Sun, H., J. Gao, Y. Dong, and Y. Zheng, "Analysis of temperature field in switched reluctance motor based on finite-element," 2008 International Conference on Electrical Machines and Systems, 597-601, Wuhan, 2008.

11. Ganji, B., J. Faiz, K. Kasper, C. E. Carstensen, and R. W. D. Doncker, "Core loss model based on finite-element method for switched reluctance motors," IET Electric Power Applications, Vol. 4, No. 7, 569-577, Aug. 2010.
doi:10.1049/iet-epa.2009.0041

12. Siadatan, A., S. H. Mirimani, M. Shamei, and T. Khalili, "Thermal stability analysis of 6/4 switch reluctance motor using finite element method," 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 382-387, Anacapri, 2016.
doi:10.1109/SPEEDAM.2016.7525809

13. Rahman, N. A., E. Bostanci, and B. Fahimi, "Thermal analysis of switched reluctance motor with direct in-winding cooling system," 2016 IEEE Conference on Electromagnetic Field Computation (CEFC), 1-1, Miami, FL, 2016.

14. Kasprzak, M., J. W. Jiang, B. Bilgin, and A. Emadi, "Thermal analysis of a three-phase 24/16 switched reluctance machine used in HEVs," 2016 IEEE Energy Conversion Congress and Expositio (ECCE), 1-7, Milwaukee, WI, 2016.

15. Arbab, N., W. Wang, C. Lin, J. Hearron, and B. Fahimi, "Thermal modeling and analysis of a double-stator switched reluctance motor," IEEE Transactions on Energy Conversion, Vol. 30, No. 3, 1209-1217, Sept. 2015.
doi:10.1109/TEC.2015.2424400

16. Sun, Y., F. Yang, Y. Yuan, F. Yu, Q. Xiang, and Z. Zhu, "Analysis of a hybrid double stator bearingless switched reluctance motor," Electronics Letters, Vol. 54, No. 24, 1397-1399, Nov. 29, 2018.
doi:10.1049/el.2018.6273

17. Zhou, H., X. Cao, Y. Qiao, Z. Deng, and Z. Liu, "A novel 6/4 conical bearingless switched reluctance motor," 2015 18th International Conference on Electrical Machines and Systems (ICEMS), 1807-1811, Pattaya, 2015.
doi:10.1109/ICEMS.2015.7385334

18. Xiang, Q. W., L. Feng, Y. Yu, and K. Chen, "Thermal characteristics of hybrid excitation double stator bearingless switched reluctance motor," Progress In Electromagnetics Research C, Vol. 101, 105-118, 2020.
doi:10.2528/PIERC19091105

19. Liu, C., Y. Yang, and Z. Deng, "Vibration control strategy for bearingless switched reluctance motors," 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 1675-1680, Hangzhou, 2014.

20. Ahmed, F., M. D. Choudhury, G. Kumar, and K. Kalita, "Modeling and analysis of bearingless switched reluctance motor equipped with specialized stator winding," 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 1-6, Trivandrum, 2016.

21. Yan, Y., Z. Deng, X. Cao, Z. Liu, and X. Wang, "Stator vibration analysis of bearingless switched reluctance motors," 2010 International Conference on Electrical and Control Engineering, 1993-1996, Wuhan, 2010.
doi:10.1109/iCECE.2010.490