Vol. 99
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-11-30
Novel Computational Technique for Time-Dependent Heat Transfer Analysis Using Fast Inverse Laplace Transform
By
Progress In Electromagnetics Research M, Vol. 99, 45-55, 2021
Abstract
A novel computational technique is proposed for heat conduction analysis. The heat transfer equation is expanded in the complex frequency domain and solved using the finitedifference method (FDM). The results in the complex frequency domain are transformed into the time domain via fast inverse Laplace transform. In the proposed approach, the instantaneous temperature at a specific time can be easily obtained. Moreover, the computational time for the conventional explicit FDM is reduced by employing the time-division parallel computing method.
Citation
Seiya Kishimoto Shohei Nishino Shinichiro Ohnuki , "Novel Computational Technique for Time-Dependent Heat Transfer Analysis Using Fast Inverse Laplace Transform," Progress In Electromagnetics Research M, Vol. 99, 45-55, 2021.
doi:10.2528/PIERM20100203
http://www.jpier.org/PIERM/pier.php?paper=20100203
References

1. Odajima, W., F. Tawa, and S. Hasegawa, "Optical and thermal simulator for laser-assisted magnetic recording," Opt. Rev., Vol. 14, 180-185, 2007.
doi:10.1007/s10043-007-0180-4

2. Challener, W. A., et al., "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer," Nat. Photonics, Vol. 3, 220-224, 2009.
doi:10.1038/nphoton.2009.26

3. Wu, X. W., et al., "Finite element analysis of thermal problems in gas-insulated power apparatus with multiple species transport technique," IEEE Trans. Mag., Vol. 50, No. 2, 7007804-1-7007804-4, 2014.

4. Suga, R., et al., "Analytical study on change of temperature and absorption characteristics of a single-layer radiowave absorberunder irradiation electric power," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 866-871, 2005.
doi:10.1109/TEMC.2005.854102

5. Ma, L., et al., "Experimental validation of combined electromagnetic and thermal FDTD model of microwave heating process," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 11, 2565-2572, 1995.
doi:10.1109/22.473179

6. Xiong, S. and D. B. Bogy, "Investigation of the local temperature increase for heat assisted magnetic recording (HAMR)," IEEE Trans. Magn., Vol. 50, No. 4, 1-6, 2014.
doi:10.1109/TMAG.2013.2290760

7. Voller, V. and M. Cross, "Accurate solutions of moving boundary problems using theenthalpy method," Int. J. Heat Mass. Tran., Vol. 24, No. 3, 545-566, 1981.
doi:10.1016/0017-9310(81)90062-4

8. Özişik, M. N., et al., Finite Difference Methods in Heat Transfer, 1st Ed., CRC Press, 2017.
doi:10.1201/9781315168784

9. Sadiku, M. N. O., Numerical Techniques in Electromagnetics, 2nd Ed., CRC Press, 2009.

10. Hosono, T., "Numerical inversion of Laplace transform and some applications to wave optics," Radio Sci., Vol. 16, No. 6, 1015-1019, 1981.
doi:10.1029/RS016i006p01015

11. Kishimoto, S., T. Okada, S. Ohnuki, Y. Ashizawa, and K. Nakagawa, "Efficient analysis of electromagnetic fields for designing nanoscale antennas by using a boundary integral equation method with fast inverse Laplace transform," Progress In Electromagnetics Research, Vol. 146, 155-165, 2014.
doi:10.2528/PIER13081701

12. Ohnuki, S., et al., "Time-division parallel FDTD algorithm," IEEE Photon. Technol. Lett., Vol. 30, No. 24, 2143-2146, 2018.
doi:10.1109/LPT.2018.2879365

13., Japan Society of Thermophysical Properties, Thermophysical Properties Handbook, 1st Ed., Yokendo Co. Ltd., Tokyo, 2008 (in Japanese).