Vol. 98
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-11-11
Performance Analysis of Reconfigurable Intelligent Surface Assisted Underwater Optical Communication System
By
Progress In Electromagnetics Research M, Vol. 98, 101-111, 2020
Abstract
In this paper, the performance analysis of a reconfigurable intelligent surface (RIS) assisted underwater optical communication (UWOC) system with a decode-and-forward (DF) relaying protocol is presented. The radio frequency (RF)-RIS link is subjected to Rayleigh fading while the optical UWOC link experiences mixture Exponential-Gamma distributions subject to heterodyne detection and intensity modulation with direct detection (IMDD). In order to obtain a traceable closed-form expression, the statistical distribution of the RF-RIS link is derived in terms of Meijer-G function. Thus, the exact closed-form expressions for system end-to-end outage probability and average bit error rate (ABER) for different modulation schemes are then derived. To gain further insight about the derived analytical expressions, asymptotic expressions for the system are derived at high signal-to-noise ratio (SNR) through which the diversity gain is obtained. The findings show the significant impact of the number of RIS elements, detection technique, and the UWOC optical turbulence on the system performance. Finally, Monte-Carlo simulation is used to justify the accuracy of the derived analytical results.
Citation
Kehinde Oluwasesan Odeyemi Pius Adewale Owolawi Oladayo O. Olakanmi , "Performance Analysis of Reconfigurable Intelligent Surface Assisted Underwater Optical Communication System," Progress In Electromagnetics Research M, Vol. 98, 101-111, 2020.
doi:10.2528/PIERM20101203
http://www.jpier.org/PIERM/pier.php?paper=20101203
References

1. Huang, C., A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, "Reconfigurable intelligent surfaces for energy efficiency in wireless communication," IEEE Transactions on Wireless Communications Name, Vol. 18, No. 8, 4157-4170, 2019.
doi:10.1109/TWC.2019.2922609

2. Yang, L., Y. Yang, M. O. Hasna, and M.-S. Alouini, "Coverage, probability of SNR gain, and DOR analysis of RIS-aided communication systems," IEEE Wireless Communications Letters, 2020.

3. Basar, E., M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, and R. Zhang, "Wireless communications through reconfigurable intelligent surfaces," IEEE Access, Vol. 7, 116753-116773, 2019.
doi:10.1109/ACCESS.2019.2935192

4. Yang, L., W. Guo, and I. S. Ansari, "Mixed dual-hop FSO-RF communication systems through reconfigurable intelligent surface," IEEE Communications Letters, 2020.

5. Basar, E., "Transmission through large intelligent surfaces: A new frontier in wireless communications," 2019 European Conference on Networks and Communications (EuCNC), 112-117, IEEE, 2019.
doi:10.1109/EuCNC.2019.8801961

6. Odeyemi, K. O., P. A. Owolawi, and O. O. Olakanmi, "Reconfigurable intelligent surface assisted mobile network with randomly moving user over Fisher-Snedecor fading channel," Physical Communication, 101186, 2020.
doi:10.1016/j.phycom.2020.101186

7. Nemati, M., J. Park, and J. Choi, "RIS-assisted coverage enhancement in millimeter-wave cellular networks,", arXiv preprint arXiv:.08196, 2020.

8. Subrt, L. and P. Pechac, "Controlling propagation environments using intelligent walls," 2012 6th European Conference on Antennas and Propagation (EUCAP), 1-5, IEEE, 2012.

9. Tan, X., Z. Sun, D. Koutsonikolas, and J. M. Jornet, "Enabling indoor mobile millimeter-wave networks based on smart reflect-arrays," IEEE INFOCOM 2018-IEEE Conference on Computer Communications, 270-278, IEEE, 2018.
doi:10.1109/INFOCOM.2018.8485924

10. Wu, Q. and R. Zhang, "Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts," IEEE Transactions on Communications Name, Vol. 68, No. 3, 1838-1851, 2019.
doi:10.1109/TCOMM.2019.2958916

11. Hu, S., K. Chitti, F. Rusek, and O. Edfors, "User assignment with distributed large intelligent surface (LIS) systems," 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 1-6, IEEE, 2018.

12. Ramavath, P. N., S. A. Udupi, and P. Krishnan, "High-speed and reliable underwater wireless optical communication system using multiple-input multiple-output and channel coding techniques for IoUT applications," Optics Communications Name, Vol. 461, 125229, 2020.
doi:10.1016/j.optcom.2019.125229

13. Kaushal, H. and G. Kaddoum, "Underwater optical wireless communication," IEEE access Name, Vol. 4, 1518-1547, 2016.
doi:10.1109/ACCESS.2016.2552538

14. Zedini, E., A. Kammoun, H. Soury, M. Hamdi, and M.-S. Alouini, "Performance analysis of dual-hop underwater wireless optical communication systems over mixture exponential-generalized gamma turbulence channels," IEEE Transactions on Communications, 2020.

15. Saxena, P. and M. R. Bhatnagar, "A simplified form of beam spread function in underwater wireless optical communication and its applications," IEEE Access Name, Vol. 7, 105298-105313, 2019.
doi:10.1109/ACCESS.2019.2929738

16. Zedini, E., H. M. Oubei, A. Kammoun, M. Hamdi, B. S. Ooi, and M.-S. Alouini, "Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems," IEEE Transactions on Communications Name, Vol. 67, No. 4, 2893-2907, 2019.
doi:10.1109/TCOMM.2019.2891542

17. Odeyemi, K. O. and P. A. Owolawi, "Wireless energy harvesting based asymmetric RF/FSO system with transmit antenna selection and receive diversity over M-distribution channel and non-zero boresight pointing error," Optics Communications Name, Vol. 461, 125219, 2020.
doi:10.1016/j.optcom.2019.125219

18. Lei, H., Y. Zhang, K.-H. Park, I. S. Ansari, G. Pan, and M.-S. Alouini, "Performance analysis of dual-hop RF-UWOC systems," IEEE Photonics Journal Name, Vol. 12, No. 2, 1-5, 2020.
doi:10.1109/JPHOT.2020.2983016

19. Amer, M. and Y. Al-Eryani, "Underwater optical communication system relayed by $\alpha-\mu$ fading channel: Outage, capacity and asymptotic analysis,", arXiv preprint arXiv:.04243, 2019.

20. Lei, H., Y. Zhang, K.-H. Park, I. S. Ansari, G. Pan, and M.-S. Alouini, "On the performance of dual-hop RF-UWOC system," 2020 IEEE International Conference on Communications Workshops (ICC Workshops), 1-6, IEEE, 2020.

21. Proakis, J. G. and M. J. I. Salehi, Digital Communications, McGraw-Hill, New York, 1995.

22. Yang, L. and Y. Yuan, "Secrecy outage probability analysis for RIS-assisted NOMA systems,", arXiv preprint arXiv:.15902, 2020.

23. Wolfram, I., Research, Wolfram|One,, Available: https://functions.wolfram.com/BesselTypeFunctions/BesselI/introductions/Bessels/ShowAll.html, 2020.

24. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 2014.

25. Adamchik, V. and O. Marichev, "The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system," Proceedings of the International Symposium on Symbolic and Algebraic Computation, 212-224, 1990.

26. Zedini, E., I. S. Ansari, and M.-S. Alouini, "Performance analysis of mixed Nakagami-$m$ and Gamma-Gamma dual-hop FSO transmission systems," IEEE Photonics Journal Name, Vol. 7, No. 1, 1-20, 2014.
doi:10.1109/TVT.2018.2833871

27. Yang, L., M.-S. Alouini, and I. S. Ansari, "Asymptotic performance analysis of two-way relaying FSO networks with nonzero boresight pointing errors over double-generalized gamma fading channels," IEEE Transactions on Vehicular Technology Name, Vol. 67, No. 8, 7800-7805, 2018.