Vol. 100
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-12-25
Non-Contact Determination of Vital Signs Monitoring of Animals in Hemorrhage States Using Bio-Radar
By
Progress In Electromagnetics Research M, Vol. 100, 23-34, 2021
Abstract
With the rapid development and in-depth research of non-contact bio-radar-based detection technology, researchers have recently been putting more emphasis on target identification. Living status identification, a hotspot of target identification research, is particularly useful in search and rescue missions. During such missions, in order to rescue victims and provide corresponding medical support in a timely manner, it is necessary to acquire the survival information of victims, especially when they are injured. Hence, the vital signs extracted from a radar signal should be considered as the crucial parameters to reflect the living status. To determine living status through analyzing vital signs, this study utilized a bio-radar system to continuously monitor hemorrhagic animals, which simulated injured persons with hemorrhagic symptoms. Moreover, we defined and classified three survival periods based on changes in vital signs combined with a K-nearest neighbor algorithm (KNN) classifier. Experimental results show that we can approximately determine the current living status of animals with this method, which can aid in providing information for on-site rescue and follow-up medical treatment.
Citation
Xiao Yu Yue Yin Hao Lv Yang Zhang Fulai Liang Pengfei Wang Jianqi Wang , "Non-Contact Determination of Vital Signs Monitoring of Animals in Hemorrhage States Using Bio-Radar," Progress In Electromagnetics Research M, Vol. 100, 23-34, 2021.
doi:10.2528/PIERM20102706
http://www.jpier.org/PIERM/pier.php?paper=20102706
References

1. Borek, S. E., B. J. Clarke, and P. J. Costianes, "Through-the-wall surveillance for homeland security and law enforcement," Proc SPIE, Vol. 5778, 175-185, 2005.
doi:10.1117/12.602897

2. Burchett, H., "Advances in through wall radar for search, rescue and security applications," 2006 IET Conference on Crime and Security, 511-525, London, UK, 2006.

3. Staderini, E. M., "UWB radars in medicine," IEEE Aeros. Elec. Sys. Mag., Vol. 17, No. 1, 13-18, 2002.
doi:10.1109/62.978359

4. Ernestina, C. and G. Bharat, "FM-UWB for communications and radar in medical applications," Wireless. Pers. Commun., Vol. 51, 793-809, 2009.

5. Chang, J., C. Paulson, and P. Welsh, "Development of micropower ultrawideband impulse radar medical diagnostic systems for continuous monitoring applications and austere environments," 2012 IEEE Radar Conference, 699-704, 2012.
doi:10.1109/RADAR.2012.6212228

6. Gu, C. Z. and C. Z. Li, "From tumor targeting to speech monitoring: Accurate respiratory monitoring using medical continuous-wave radar sensors," IEEE Microwave Magazine, Vol. 15, 66-76, 2014.

7. Mostov, K., E. Liptsen, and R. Boutchko, "Medical applications of shortwave FM radar: Remote monitoring of cardiac and respiratory motion," Medical Physics, Vol. 37, No. 3, 1332-1338, 2010.
doi:10.1118/1.3267038

8. Kim, Y., S. Ha, and J. Kwon, "Human detection using doppler radar based on physical characteristics of targets," IEEE Geoscience and Remote Sensing Letters, Vol. 12, No. 2, 289-293, 2015.
doi:10.1109/LGRS.2014.2336231

9. Nanzer, J. A., "A review of microwave wireless techniques for human presence detection and classification," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 5, 1780-1794, 2017.
doi:10.1109/TMTT.2017.2650909

10. Liang, F. L., F. G. Qi, Q. An, H. Lv, F. M. Chen, Z. Li, and J. Q. Wang, "Detection of multiple stationary humans using UWB MIMO radar," Sensors, Vol. 16, No. 11, 1922-1938, Basel, Switzerland, 2016.
doi:10.3390/s16111922

11. Li, J., Z. Zeng, J. Sun, and F. Liu, "Through-wall detection of human Being's movement by UWB radar," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 6, 1079-1083, 2012.
doi:10.1109/LGRS.2012.2190707

12. Thiel, M. and K. Sarabandi, "Ultra wideband multi-static scattering analysis of human movement within buildings for the purpose of stand-off detection and localization," IEEE Trans. Antennas Propag., Vol. 59, 1261-1268, 2011.
doi:10.1109/TAP.2011.2109349

13. Van, N., A. Q. Javaid, and M. A. Weitnauer, "Detection of motion and posture change using an IR-UWB radar," 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3650-3653, Orlando, FL, USA, 2016.

14. Kiasari, M. A., S. Y. Na, J. Y. Kim, and Y. Won, "Monitoring human behavior patterns using ultra-wide band radar based on neural networks," Asia Life Sciences, 13-29, 2015.

15. Zhai, S. J. and T. Jiang, "Target detection and classification by measuring and processing bistatic UWB radar signal," Measurement, Vol. 47, 547-557, 2014.
doi:10.1016/j.measurement.2013.08.031

16. Bryan, J. D., J. Kwon, N. Lee, and Y. Kim, "Application of ultra-wide band radar for classification of human activities," IET Radar, Sonar & Navigation, Vol. 6, No. 3, 172-179, 2012.
doi:10.1049/iet-rsn.2011.0101

17. Lv, H., G. H. Lu, X. J. Jing, and J. Q. Wang, "A new ultra-wideband radar for detecting survivors buried under earthquake rubbles," Microwave & Optical Technology Letters, Vol. 52, No. 11, 2621-2624, 2010.
doi:10.1002/mop.25539

18. Wang, J. Q., C. X. Zheng, G. H. Lu, and X. J. Jing, "A new method for identifying the life parameters via radar," EURASIP Journal on Advances in Signal Processing, Vol. 2007, No. 1, 1-8, 2007.
doi:10.1155/2007/89264

19. Zhang, Y., F. M. Chen, H. J. Xue, Z. Li, Q. An, J. Q. Wang, and Y. Zhang, "Detection and identification of multiple stationary human targets via bio-radar based on the cross-correlation method," Sensors, Vol. 16, No. 11, 1793-1804, 2016.
doi:10.3390/s16111793

20. Liang, F. L., F. G. Qi, Q. An, H. Lv, F. M. Chen, Z. Li, and J. Q. Wang, "Detection of multiple stationary humans using UWB MIMO radar," Sensors, Vol. 16, No. 11, 1922-1938, Basel, Switzerland, 2016.
doi:10.3390/s16111922

21. Lv, H., F. G. Qi, Y. Zhang, T. Jiao, F. L. Liang, Z. Li, and J. Q. Wang, "Improved detection of human respiration using data fusion based on a multistatic UWB radar," Remote Sensing, Vol. 8, No. 9, 773-791, 2016.
doi:10.3390/rs8090773

22. Lv, H., W. Li, Z. Li, Y. Zhang, T. Jiao, H. J. Xue, M. Liu, X. J. Jing, and J. Q. Wang, "Characterization and identification of IR-UWB respiratory-motion response of trapped victims," IEEE Trans. Geosci. Remote Sens., Vol. 52, 7195-7204, 2014.
doi:10.1109/TGRS.2014.2309141

23. Yu, X., T. J. Jiao, H. Lv, Y. Zhang, Z. Li, and J. Q. Wang, "A new use of UWB radar to detecting victims and discriminating humans from animals," 2016 16th International Conference on Ground Penetrating Radar (GPR), 1-5, Hong Kong, China, June 2016.

24. Wang, Y., X. Yu, Y. Zhang, H. Lv, T. Jiao, G. Lu, W. Z. Li, Z. Li, X. Jing, and J. Wang, "Using wavelet entropy to distinguish between humans and dogs detected by UWB radar," Progress In Electromagnetics Research, Vol. 139, 335-352, 2013.
doi:10.2528/PIER13032508

25. Yin, Y., X. Yu, H. Lv, F. G. Qi, Z. Q. Zhang, and J. Q. Wang, "Micro-vibration distinguishment of radar between humans and animals based on EEMD and energy ratio characteristics," China Medical Devices, Vol. 33, No. 10, 27-31, 2018.

26. Nunez, T. C., "Cotton BA transfusion therapy in hemorrhagic shock," Curr. Opin. Crit. Care, Vol. 15, 536-541, 2009.
doi:10.1097/MCC.0b013e328331575b

27. Matsui, T., T. Ishizuka, B. Takase, M. Ishihara, and M. Kikuchi, "Non-contact determination of vital sign alterations in hypovolaemic states induced by massive haemorrhage: An experimental attempt to monitor the condition of injured persons behind barriers or under disaster rubble," Medical and Biological Engineering and Computing, Vol. 42, No. 6, 807-811, 2004.
doi:10.1007/BF02345214

28. Wang, D. W., Y. Li, and R. Y. Peng, "Characters of the kinds and severity of injuries in deeply buried wounded personnel due to disaster and the monitoring of their vital sign," J. Trauma. Surg., Vol. 19, No. 10, 792-795, 2017.

29. Azriel, P., R. Pizov, and C. Shamay, "Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage," Anesthesiology, Vol. 67, 498-502, 1987.

30. Stern, A., C. D. Susan, B. P. Steven, and X. Wang, "Effect of blood pressure on haemorrhage volume and survival in a nearfatal haemorrhage model incorporating a vascular injury," Annals of Emergency Medicine, Vol. 22, 155-163, 1993.
doi:10.1016/S0196-0644(05)80195-7

31. Fulop, A., Z. Turoczi, D. Garbaisz, L. Harsanyi, and A. Szijarto, "Experimental models of hemorrhagic shock: A review," European Surgical Research, Vol. 50, No. 2, 57-70, 2013.
doi:10.1159/000348808

32. Gutierrez, G. and H. D. Reines, "Wulf-gutierrez ME clinical review: Hemorrhagic shock," Crit. Care, Vol. 8, 373-381, 2004.
doi:10.1186/cc2851

33. Shannon, C. E., "A mathematical theory of communication," ACM SIGMOBILE Mobile Computing and Communication Review, Vol. 5, No. 1, 3-55, 1948.
doi:10.1145/584091.584093

34. Hasan, A. A., S. P. Joseph, C. Z. Wendy, F. H. Daniel, and V. T. Nitish, "Wavelet entropy for subband segmentation of EEG during injury and recovery," Annals of Biomedical Engineering, Vol. 31, 653-658, 2003.

35. Cover, T. M. and P. E. Hart, "Nearest neighbor pattern classification," IEEE Transactions on Information Theory, Vol. 13, No. 1, 21-27, 1967.
doi:10.1109/TIT.1967.1053964

36. Hand, D., H. Mannila, and P. Smyth, Principles of Data Mining, The MIT Press, 2013.

37. Zhang, H., C. B. Alexander, M. Michael, and M. Jitendra, "SVM-KNN: Discriminative nearest neighbor classification for visual category recognition," 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2126-2136, New York, US, 2006.