Vol. 101

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-02-18

Millimeter-Wave Frequency-Diverse Imaging with Phased Array Intended for Communications

By Mikko K. Leino, Jan Bergman, Juha Ala-Laurinaho, and Ville Viikari
Progress In Electromagnetics Research M, Vol. 101, 69-78, 2021
doi:10.2528/PIERM20120102

Abstract

This paper presents a recent progress in a millimeter-wave imaging done with a potential 5G base-station phased-array antenna exhibiting frequency-diverse, non-focused beams. The presented imaging system operates in 24-32 GHz band and is the first realization where phased arrays primarily developed for 5G communications are utilized in a frequency-diverse imaging application. The image reconstruction method solves the linear inverse problem with an iterative algorithm, and several images have been reconstructed based on the measurement data. Currently, a metallic sphere can be successfully located in the target space. However, future work is still required, and the paper further discusses the possibilities and restrictions of the current imaging setup.

Citation


Mikko K. Leino, Jan Bergman, Juha Ala-Laurinaho, and Ville Viikari, "Millimeter-Wave Frequency-Diverse Imaging with Phased Array Intended for Communications," Progress In Electromagnetics Research M, Vol. 101, 69-78, 2021.
doi:10.2528/PIERM20120102
http://www.jpier.org/PIERM/pier.php?paper=20120102

References


    1. Gu, X., A. Valdes-Garcia, A. Natarajan, B. Sadhu, D. Liu, and S. K. Reynolds, "W-band scalable phased arrays for imaging and communications," IEEE Communications Magazine, Vol. 53, No. 4, 196-204, Apr. 2015.
    doi:10.1109/MCOM.2015.7081095

    2. Eudeline, P., "Survey of active electronically scanned antenna in Thales radars," 2013 IEEE International Symposium on Phased Array Systems and Technology, 12-16, Waltham, USA, Oct. 2013.

    3. Agrawal, A. K. and E. L. Holzman, "Beamformer architectures for active phased-array radar antennas," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 3, 432-442, Mar. 1999.
    doi:10.1109/8.768777

    4. Kibaroglu, K., M. Sayginer, T. Phelps, and G. M. Rebeiz, "A 64-element 28-GHz phased-array transceiver with 52-dBm EIRP and 8-12-Gb/s 5G link at 300 meters without any calibration," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 12, 5796-5811, Dec. 2018.
    doi:10.1109/TMTT.2018.2854174

    5. Leino, M. K., R. Montoya Moreno, J. Ala-Laurinaho, R. Valkonen, and V. Viikari, "Waveguide-based phased array with integrated element-specific electronics for 28 GHz," IEEE Access, Vol. 7, 90 045-90 054, 2019.
    doi:10.1109/ACCESS.2019.2925458

    6. Kuai, L., J. Chen, Z. H. Jiang, C. Yu, C. Guo, Y. Yu, H. Zhou, and W. Hong, "A N260 band 64 channel millimeter wave full-digital multi-beam array for 5G massive MIMO applications," IEEE Access, Vol. 8, 47 640-47 653, 2020.
    doi:10.1109/ACCESS.2020.2978070

    7. Guan, J., A. Paidimarri, A. Valdes-Garcia, and B. Sadhu, "3D imaging using mmWave 5G signals," 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 147-150, Los Angeles, USA, Aug. 2020.

    8. Liu, F., C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, "Joint radar and communication design: Applications, state-of-the-art, and the road ahead," IEEE Transactions on Communications, Vol. 68, No. 6, 3834-3862, Jun. 2020.
    doi:10.1109/TCOMM.2020.2973976

    9. Ahmed, S. S., A. Schiessl, and L. Schmidt, "A novel fully electronic active real-time imager based on a planar multistatic sparse array," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3567-3576, Dec. 2011.
    doi:10.1109/TMTT.2011.2172812

    10. Moreira, A., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, "A tutorial on synthetic aperture radar," IEEE Geoscience and Remote Sensing Magazine, Vol. 1, No. 1, 6-43, Mar. 2013.
    doi:10.1109/MGRS.2013.2248301

    11. Imani, M. F., J. N. Gollub, O. Yurduseven, A. V. Diebold, M. Boyarsky, T. Fromenteze, L. Pulido-Mancera, T. Sleasman, and D. R. Smith, "Review of metasurface antennas for computational microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1860-1875, Mar. 2020.
    doi:10.1109/TAP.2020.2968795

    12. Zvolensky, T., V. R. Gowda, J. Gollub, D. L. Marks, and D. R. Smith, "W-band sparse imaging system using frequency diverse cavity-fed metasurface antennas," IEEE Access, Vol. 6, 73 659-73 668, 2018.
    doi:10.1109/ACCESS.2018.2883402

    13. Yurduseven, O., T. Fromenteze, and D. R. Smith, "Relaxation of alignment errors and phase calibration in computational frequency-diverse imaging using phase retrieval," IEEE Access, Vol. 6, 14 884-14 894, 2018.
    doi:10.1109/ACCESS.2018.2816341

    14. Yurduseven, O., T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, "Frequency-diverse computational microwave phaseless imaging," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2808-2811, 2017.

    15. Odabasi, H., M. Imani, G. Lipworth, J. Gollub, and D. Smith, "Investigation of alignment errors on multi-static microwave imaging based on frequency-diverse metamaterial apertures," Progress In Electromagnetics Research B, Vol. 70, 101-112, 2016.
    doi:10.2528/PIERB16052801

    16. Leino, M. K., J. Ala-Laurinaho, Z. Purisha, S. Särkkä, and V. Viikari, "Millimeter-wave imaging method based on frequency-diverse subarrays," 2019 12th Global Symposium on Millimeter Waves (GSMM), 84-86, Sendai, Japan, May 2019.
    doi:10.1109/GSMM.2019.8797670

    17. Bioucas-Dias, J. M. and M. A. T. Figueiredo, "A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration," IEEE Transactions on Image Processing, Vol. 16, No. 12, 2992-3004, Dec. 2007.
    doi:10.1109/TIP.2007.909319

    18. Yurduseven, O., M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, "Resolution of the frequency diverse metamaterial aperture imager," Progress In Electromagnetics Research, Vol. 150, 97-107, 2015.
    doi:10.2528/PIER14113002

    19. Lipworth, G., A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, "Metamaterial apertures for coherent computational imaging on the physical layer," Journal of the Optical Society of America A, Vol. 30, No. 8, 1603-1612, Aug. 2013.
    doi:10.1364/JOSAA.30.001603

    20. Zhu, R., T. Zvolensky, and D. Marks, "Millimeter wave computational imaging with 3D printed leaky wave frequency diverse antenna," 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 1, Copenhagen, Denmark, Sep. 2016.

    21. Tamminen, A., S.-V. Pälli, J. Ala-Laurinaho, A. Aspelin, A. Oinaanoja, and Z. Taylor, "Holograms with neural-network backend for submillimeter-wave beamforming applications," Proc. SPIE, Vol. 11411, 10 pages, Online Only, Apr. 2020.

    22. Gu, X., D. Liu, C. Baks, O. Tageman, B. Sadhu, J. Hallin, L. Rexberg, P. Parida, Y. Kwark, and A. Valdes-Garcia, "Development, implementation, and characterization of a 64-element dual polarized phased-array antenna module for 28-GHz high-speed data communications," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 7, 2975-2984, Jul. 2019.
    doi:10.1109/TMTT.2019.2912819

    23. Kähkönen, H., J. Ala-Laurinaho, and V. Viikari, "Dual-polarized Ka-band Vivaldi antenna array," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2675-2683, Apr. 2020.
    doi:10.1109/TAP.2019.2948561

    24. Nafe, A., M. Sayginer, K. Kibaroglu, and G. M. Rebeiz, "2×64-element dual-polarized dual-beam single-aperture 28-GHz phased array with 2×30 Gb/s links for 5G polarization MIMO," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 9, 3872-3884, Sep. 2020.
    doi:10.1109/TMTT.2020.2989117