Vol. 100
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-01-19
Addressing Grating Lobes in Linear Scanning Phased Arrays with Self-Nulling Elements and Optimized Amplitude Distributions
By
Progress In Electromagnetics Research M, Vol. 100, 151-161, 2021
Abstract
An effective method to reduce grating lobes in linear scanning phased array antennas with large element spacing of one wavelength is presented. The proposed technique is based on employing self-nulling antenna elements by simultaneously exciting the first two modes in a circular microstrip patch antenna to partially nullify the grating lobes. More importantly, a modified amplitude tapering is optimized in the array level to facilitate the grating lobe reduction for relatively wide scan angles up to ±60°. Analytical results of a 21-element linear array are fully presented, and a -22.5 dB grating lobe reduction for up to ±60° scan angles is reported using the proposed method, followed by the results of a smaller array for validation purposes.
Citation
Zabed Iqbal Maria Pour , "Addressing Grating Lobes in Linear Scanning Phased Arrays with Self-Nulling Elements and Optimized Amplitude Distributions," Progress In Electromagnetics Research M, Vol. 100, 151-161, 2021.
doi:10.2528/PIERM20120806
http://www.jpier.org/PIERM/pier.php?paper=20120806
References

1. Fourikis, N., Phased Array-based Systems and Applications, John Wiley & Sons, New York, 1997.

2. Garg, R., P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

3. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., Wiley, Hoboken, 620 NJ, USA, 2016.

4. Yu, J., V. A. Khlebnikov, and M.-H. Ka, "Wideband grating-lobe suppression by rotation of the phased array stations in the SKA low-frequency sparse aperture array," IEEE Trans. Antennas Propag., Vol. 63, No. 9, 393-3946, Sept. 2015.
doi:10.1109/TAP.2015.2452965

5. Tu, X., G. Zhu, X. Hu, and X. Huang, "Grating lobe suppression in sparse array-based ultrawideband through-wall imaging radar," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1020-1023, Oct. 2016.

6. Zhao, X., Q. Yang, and Y. Zhang, "A hybrid method for the optimal synthesis of 3-D patterns of sparse concentric ring arrays," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 515-524, Feb. 2016.
doi:10.1109/TAP.2015.2504377

7. Goudos, S. K., K. Siakavara, T. Samaras, E. E. Vafiadis, and J. N. Sahalos, "Sparse linear array synthesis with multiple constraints using differential evolution with strategy adaptation," IEEE Antennas Wireless Propag. Lett., Vol. 10, 670-673, Jul. 2011.

8. Chen, K., H. Chen, L. Wang, and H. Wu, "Modified real GA for the synthesis of sparse planar circular arrays," IEEE Antennas Wireless Propag. Lett., Vol. 15, 274-277, Jun. 2015.

9. Lu, B., S. X. Gong, S. Zhang, Y. Guan, and J. Ling, "Optimum spatial arrangement of array elements for suppression of grating-lobes of radar cross section," IEEE Antennas Wireless Propag. Lett., Vol. 9, 114-117, Feb. 2010.
doi:10.1109/LAWP.2010.2044230

10. Bianchi, D., S. Genovesi, and A. Monorchio, "Randomly overlapped subarrays for reduced sidelobes in angle-limited scan arrays," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1969-1972, Apr. 2017.
doi:10.1109/LAWP.2017.2690824

11. Krivosheev, Y. V., A. V. Shishlov, and V. V. Denisenko, "Grating lobe suppression in aperiodic phased array antennas composed of periodic subarrays with large element spacing," IEEE Antennas Propag. Magazine, Vol. 57, No. 1, 76-85, Feb. 2015.
doi:10.1109/MAP.2015.2397155

12. Harrington, R. F., "Sidelobe reduction by nonuniform element spacing," IRE Trans. Antennas Propag., Vol. 9, No. 2, 187-192, Mar. 1961.
doi:10.1109/TAP.1961.1144961

13. Haupt, R. L., "Reducing grating lobes due to subarray amplitude tapering," IEEE Trans. Antennas Propag., Vol. 9, No. 8, 846-850, Aug. 1985.
doi:10.1109/TAP.1985.1143682

14. Diawuo, H. A., S. J. Lee, and Y.-B. Jung, "Sidelobe-level reduction of a linear array using two amplitude tapering techniques," IET Microwave Antennas Propag., Vol. 11, No. 10, 1432-1437, Jul. 2017.
doi:10.1049/iet-map.2016.0883

15. Goudos, S. K., G. S. Miaris, K. Siakavara, and J. N. Sahalos, "On the orthogonal nonuniform synthesis from a set of uniform linear arrays," IEEE Antennas Wireless Propag. Lett., Vol. 6, 313-316, Jul. 2007.

16. Koretz, A. and B. Rafaely, "Dolph-Chebyshev beampattern design for spherical arrays," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 2417-2420, Jun. 2009.

17. Buttazzoni, G. and R. Vescovo, "Gaussian approach versus Dolph-Chebyshev synthesis of pencil beams for linear antenna arrays," Electronic Lett., Vol. 54, No. 1, 8-10, Jan. 2018.
doi:10.1049/el.2017.3098

18. Abreu, G. T. F. and R. Kohno, "A modified Dolph-Chebyshev approach for the synthesis of low sidelobe beampatterns with adjustable beamwidth," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 3014-3017, Oct. 2003.
doi:10.1109/TAP.2003.817989

19. Juntunen, J. O., K. I. Nikoskinen, and K. J. M. Heiska, "Binomial array as a multistate phase diversity antenna," IEEE Trans. Vehicular Tech., Vol. 49, No. 3, 698-705, May 2000.
doi:10.1109/25.845088

20. Ling, C.-W., W.-H. Lo, R.-H. Yan, and S.-J. Chung, "Planar binomial curved monopole antennas for ultrawideband communication," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2622-2624, Sept. 2007.
doi:10.1109/TAP.2007.904140

21. Iqbal, Z. and M. Pour, "Grating lobe reduction in scanning phased array antennas with large element spacing," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 6965-6974, Dec. 2018.
doi:10.1109/TAP.2018.2874717

22. Iqbal, Z. and M. Pour, "Exploiting higher order modes for grating lobe reductions in scanning phased array antennas," IEEE Trans. Antennas Propag., Vol. 67, No. 11, 7144-7149, Aug. 2019.
doi:10.1109/TAP.2019.2934822

23. Iqbal, Z. and M. Pour, "Grating lobe mitigation in scanning planar phased array antennas," IEEE Int. Symp. Phased Array Systems and Tech., 1-3, Waltham, MA, USA, Oct. 15-18, 2019.

24. Haung, J., "Circularly polarized conical patterns from circular microstrip antennas," IEEE Trans. Antennas Propag., Vol. 32, No. 9, 991-994, Sept. 1984.
doi:10.1109/TAP.1984.1143455

25. Iqbal, Z. and M. Pour, "Amplitude control null steering in a multi-mode patch antenna," Progress In Electromagnetics Research Letters, Vol. 82, 107-112, 2019.
doi:10.2528/PIERL19010710

26. GA Toolbox, MATLAB 2017, The MathWorks, Inc., Natick, Massachusetts, United States, [online] Available: https://www.mathworks.com/products/global-optimization.html.

27., "High frequency structure simulator (HFSS 18.0),", Canonsburg, PA, USA, ANSYS, 2018.

28. Pour, M., M. Henley, A. Young, and Z. Iqbal, "Cross-polarization reduction in offset reflector antennas with dual-mode microstrip primary feeds," IEEE Antennas and Wireless Propag. Lett., Vol. 18, No. 5, 926-930, Mar. 2019.
doi:10.1109/LAWP.2019.2906018