Vol. 101
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-02-27
Direct Control of Bearingless Permanent Magnet Synchronous Motor Based on Prediction Model
By
Progress In Electromagnetics Research M, Vol. 101, 127-138, 2021
Abstract
The direct control for the bearingless permanent magnet synchronous motor (BPMSM) has problems of large ripples of flux linkage, torque, and suspension force due to sampling time delay. To solve above problems, a predictive direct control method is proposed based on the traditional direct control by adding prediction model. Firstly, the generation principle of radial suspension forces of the BPMSM is introduced. Secondly, the models of the predictive direct control method are given based on the traditional direct control, and the time-delay compensation model is deduced. Thirdly, the predictive direct control system is constructed, and the simulations are carried out. Finally, the proposed control strategy is applied to a prototype, and the related experimental results are given and analyzed. The results of the simulations and experiments show that compared with the traditional direct control of the BPMSM, the predictive direct control strategy can effectively reduce the ripples of flux linkage, torque, and suspension forces, and improve the static and dynamic performance of the BPMSM.
Citation
Huangqiu Zhu, and Mingcan Wu, "Direct Control of Bearingless Permanent Magnet Synchronous Motor Based on Prediction Model," Progress In Electromagnetics Research M, Vol. 101, 127-138, 2021.
doi:10.2528/PIERM20121401
References

1. Zhu, H. and Z. Gu, "Active disturbance rejection control of 5-degree-of-freedom bearingless permanent magnet synchronous motor based on fuzzy neural network inverse system," ISA Transactions, Vol. 101, 295-308, Jun. 2020.
doi:10.1016/j.isatra.2020.01.028

2. Zhao, C. and H. Zhu, "Design and analysis of a novel bearingless flux-switching permanent magnet motor," IEEE Transactions on Industrial Electronics, Vol. 64, No. 8, 6127-6136, Aug. 2017.
doi:10.1109/TIE.2017.2682018

3. Sun, X., L. Chen, and Z. Yang, "Overview of bearingless permanent magnet synchronous motors," IEEE Transactions on Industrial Electronics, Vol. 60, No. 12, 5528-5538, Dec. 2013.
doi:10.1109/TIE.2012.2232253

4. Zhang, S. and F. L. Luo, "Direct control of radial displacement for bearingless permanent-magnet-type synchronous motors," IEEE Transactions on Industrial Electronics, Vol. 56, No. 2, 542-552, Feb. 2009.
doi:10.1109/TIE.2008.2003219

5. Takahashi, I. and T. Noguchi, "A new quick-response and high-efficiency control strategy of an induction motor," IEEE Transactions on Industry Applications, Vol. IA-22, No. 5, 820-827, Sept. 1986.
doi:10.1109/TIA.1986.4504799

6. Zhu, H., et al. "Direct torque and direct suspension force control of bearingless permanent magnet synchronous motor," Proc. Int. Conf. Chinese Control and Decision Conference (CCDC), 2411-2415, Xuzhou, 2010.

7. Naik, N. V., A. Panda, and S. P. Singh, "A three-level fuzzy-2 DTC of induction motor drive using SVPWM," IEEE Transactions on Industrial Electronics, Vol. 63, No. 3, 1467-1479, Mar. 2016.
doi:10.1109/TIE.2015.2504551

8. Iacchetti, M. F., G. D. Marques, and R. Perini, "Torque ripple reduction in a DFIG-DC system by resonant current controllers," IEEE Transactionson Power. Electronics, Vol. 30, No. 8, 4244-4254, Aug. 2015.
doi:10.1109/TPEL.2014.2360211

9. Ammar, A., et al. "Predictive direct torque control with reduced ripples and fuzzy logic speed controller for induction motor drive," Proc. Int. Conf. International Conference on Electrical Engineering-Boumerdes (ICEE-B), 1-6, Boumerdes, 2017.

10. Ammar, A., B. Abdelhamid, and B. Amor, "Closed loop torque SVM-DTC based on robust super twisting speed controller for induction motor drive with efficiency optimization," International Journal of Hydrogen Energy, Vol. 42, No. 28, 17940-17952, Apr. 2017.
doi:10.1016/j.ijhydene.2017.04.034

11. Wang, F., et al. "Model-based predictive direct control strategies for electrical drives: An experimental evaluation of PTC and PCC methods," IEEE Transactions on Industrial Informatics, Vol. 11, No. 3, 671-681, Jun. 2015.
doi:10.1109/TII.2015.2423154

12. Correa, P., M. Pacas, and J. Rodriguez, "Predictive torque control for inverter-fed induction machines," IEEE Transactions on Industrial Electronics, Vol. 54, No. 2, 1073-1079, Apr. 2007.
doi:10.1109/TIE.2007.892628

13. Li, C., et al. "An improved finite-state predictive torque control for switched reluctance motor drive," IET Electric Power Applications, Vol. 12, No. 1, 144-151, Jan. 2018.
doi:10.1049/iet-epa.2017.0268

14. Xiao, M., et al. "Predictive torque control of permanent magnet synchronous motor using flux vector," IEEE Transactions on Industry Applications, Vol. 54, No. 5, 4437-4446, Sept.-Oct. 2018.
doi:10.1109/TIA.2018.2833817

15. Cao, B., et al. "Direct torque model predictive control of a polyphase permanent magnet synchronous motor with current harmonic suppression and loss reduction," Proc. Int. Conf. IEEE Applied Power Electronics Conference and Exposition (APEC), 2460-2464, San Antonio, 2018.

16. Hanke, S., O. Wallscheid, and J. Bocker, "A direct model predictive torque control approach to meet torque and loss objectives simultaneously in permanent magnet synchronous motor applications," Proc. Int. Conf. Predictive Control of Electrical Drives and Power Electronics (PRECEDE), 101-106, Pilsen, 2017.

17. Wang, T., et al. "Model predictive torque control of permanent magnet synchronous motors with extended set of voltage space vectors," IET Electric Power Applications, Vol. 11, No. 8, 1376-1382, Sept. 2017.
doi:10.1049/iet-epa.2016.0870

18. Zhang, W., et al. "Direct control of bearingless permanent magnet slice motor based on active disturbance rejection control," IEEE Transactions on Applied Superconductivity, Vol. 30, No. 4, 1-5, Jun. 2020.

19. Sun, X., et al. "High-performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers," IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, 3479-3488, Jun. 2016.
doi:10.1109/TIE.2016.2530040