Vol. 101

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-03-01

Resonator Based Antenna Sensor for Breast Cancer Detection

By Praveen Kumar Rao and Rajan Mishra
Progress In Electromagnetics Research M, Vol. 101, 149-159, 2021
doi:10.2528/PIERM21011103

Abstract

A compact ultra-wideband antenna is presented for detecting malignant cells in the breast. The dimension of the proposed circular resonator-based antenna is 20 mm x 30 mm x 1.6 mm. The antenna sensor operates within the 3.1 GHz to 6.8 GHz (105.71%) range with peak gain 4.8 dB, radiation efficiency 89.2%, and an omnidirectional radiation pattern. Three types of breast phantoms (i.e., phantom without tumor, a phantom with a single tumor, and phantom with two tumors) arealso fabricated. The electrical properties of the malignant cells differ from non-malignant breast cells. S-parameters have been measured with phantom, then with the help of Principal Component Analysis (PCA), and normal and malignant breast phantoms are identified. Further, the tumor's locations in the breast phantom are find out by using the specific absorption rate (SAR) values.

Citation


Praveen Kumar Rao and Rajan Mishra, "Resonator Based Antenna Sensor for Breast Cancer Detection," Progress In Electromagnetics Research M, Vol. 101, 149-159, 2021.
doi:10.2528/PIERM21011103
http://www.jpier.org/PIERM/pier.php?paper=21011103

References


    1. Rao, P. K. and R. Mishra, "Elliptical shape flexible MIMO antenna with high isolation for breast cancer detection application," IETE Journal of Research, 1-9, 2020.
    doi:10.1080/03772063.2020.1819887

    2. Kahar, M., A. Ray, D. Sarkar, and P. P. Sarkar, "An UWB microstrip monopole antenna for breast tumor detection," Microwave and Optical Technology Letters, Vol. 57, No. 1, 49-54, 2015.
    doi:10.1002/mop.28773

    3. Islam, M. T., et al., "A low cost and portable microwave imaging system for breast tumor detection using UWB directional antenna array," Scientific Reports, Vol. 9, No. 1, 1-13, 2019.

    4. Kuhl, C. K., et al., "Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer," Journal of Clinical Oncology, Vol. 23, No. 33, 8469-8476, 2005.
    doi:10.1200/JCO.2004.00.4960

    5. Elmore, J. G., et al., "Ten-year risk of false positive screening mammograms and clinical breast examinations," New England Journal of Medicine, Vol. 338, No. 16, 1089-1096, 1998.
    doi:10.1056/NEJM199804163381601

    6. Sachs, J., et al., "Differential ultra-wideband microwave imaging: Principle application challenges," Sensors, Vol. 18, No. 7, 2136, 2018.
    doi:10.3390/s18072136

    7. Islam, Md T., et al., "Microwave imaging based breast tumor detection using compact wide slotted UWB patch antenna," Optoelectron. Adv. Mater. Rapid Commun., Vol. 13, 448-457, 2019.

    8. Rao, P. K., A. R. Yadav, and R. Mishra, "AMC-based antenna sensor for breast tumors detection," International Journal of Microwave and Wireless Technologies, 1-8, 2020.

    9. Saeidi, T., et al., "Ultra-wideband elliptical patch antenna for microwave imaging of wood," International Journal of Microwave and Wireless Technologies, Vol. 11, No. 9, 948-966, 2019.
    doi:10.1017/S1759078719000588

    10. Rahman, M., et al., "Resonator based switching technique between ultra-wide band (UWB) and single/dual continuously tunable-notch behaviors in UWB radar for wireless vital signs monitoring," Sensors, Vol. 18, No. 10, 3330, 2018.
    doi:10.3390/s18103330

    11. Haider, Am., et al., "Time-domain investigation of switchable filter wide-band antenna for microwave breast imaging," Sensors, Vol. 20, No. 15, 4302, 2020.
    doi:10.3390/s20154302

    12. Nejatijahromi, M., M. Rahman, and M. Naghshvarianjahromi, "Continuously tunable WiMAX band-notched UWB antenna with fixed WLAN notched band," Progress In Electromagnetics Research Letters, Vol. 75, 97-103, 2018.
    doi:10.2528/PIERL18010819

    13. NejatiJahromi, M., M. NagshvarianJahromi, and M. Rahman, "A new compact planar antenna for switching between UWB, narrow band and UWB with tunable-notch behaviors for UWB and WLAN applications," Applied Computational Electromagnetics Society Journal, Vol. 33, No. 4, 400, 2018.

    14. Rahman, M., W. T. Khan, and M. Imran, "Penta-notched UWB antenna with sharp frequency edge selectivity using combination of SRR, CSRR, and DGS," AEU-International Journal of Electronics and Communications, Vol. 93, 116-122, 2018.
    doi:10.1016/j.aeue.2018.06.010

    15. Rahman, M., et al., "Bandwidth enhancement and frequency scanning array antenna using novel UWB filter integration technique for OFDM UWB radar applications in wireless vital signs monitoring," Sensors, Vol. 18, No. 9, 3155, 2018.
    doi:10.3390/s18093155

    16. Rahman, M., D.-S. Ko, and J.-D. Park, "A compact multiple notched ultra-wide band antenna with an analysis of the CSRR-TO-CSRR coupling for portable UWB applications," Sensors, Vol. 17, No. 10, 2174, 2017.
    doi:10.3390/s17102174

    17. Rahman, M., et al., "Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications," Electronics, Vol. 8, No. 2, 158, 2019.
    doi:10.3390/electronics8020158

    18. Rahman, M. and J.-D. Park, "The smallest form factor UWB antenna with quintuple rejection bands for IoT applications utilizing RSRR and RCSRR," Sensors, Vol. 18, No. 3, 911, 2018.
    doi:10.3390/s18030911

    19. Zhang, J., E. C. Fear, and R. H. Johnston, "Cross-Vivaldi antenna for breast tumor detection," Microwave and Optical Technology Letters, Vol. 51, No. 2, 275-280, 2009.
    doi:10.1002/mop.24037

    20. Islam, M. T., et al., "A negative index metamaterial-inspired UWB antenna with an integration of complementary SRR and CLS unit cells for microwave imaging sensor applications," Sensors, Vol. 15, No. 5, 11601-11627, 2015.
    doi:10.3390/s150511601

    21. Foroutan, F. and N. K. Nikolova, "Active sensor for microwave tissue imaging with bias-switched arrays," Sensors, Vol. 18, No. 5, 1447, 2018.
    doi:10.3390/s18051447

    22. Jafari, H. M., J. M. Deen, S. Hranilovic, and N. K. Nikolova, "Co-polarised and cross-polarised antenna arrays for breast, cancer detection," IET Microwaves, Antennas & Propagation, Vol. 1, No. 5, 1055-1058, 2007.
    doi:10.1049/iet-map:20060327

    23. Haider, A., et al., "Time-domain investigation of switchable filter wide-band antenna for microwave breast imaging," Sensors, Vol. 20, No. 15, 4302, 2020.
    doi:10.3390/s20154302

    24. Subramanian, S., B. Sundarambal, and D. Nirmal, "Investigation on simulation-based specific absorption rate in ultra-wideband antenna for breast cancer detection," IEEE Sensors Journal, Vol. 18, No. 24, 10002-10009, 2018.
    doi:10.1109/JSEN.2018.2875621

    25. Amdaouch, I., O. Aghzout, A. Naghar, A. V. Alejos, and F. J. Falcone, "Breast tumor detection system based on a compact UWB antenna design," Progress In Electromagnetics Research M, Vol. 64, 123-133, 2018.
    doi:10.2528/PIERM17102404

    26. Sharma, M. K., et al., "Experimental investigation of the breast phantom for tumor detection using ultra-wide band{MIMO antenna sensor (UMAS) probe," IEEE Sensors Journal, Vol. 20, No. 12, 6745-6752, 2020.
    doi:10.1109/JSEN.2020.2977147

    27. Rahman, M. and J. D. Park, "The smallest form factor UWB antenna with quintuple rejection bands for IoT applications utilizing RSRR and RCSRR," Sensors, Vol. 18, 911, 2018.
    doi:10.3390/s18030911

    28. Rahmana, M., W. T. Khana, and M. Imran, "Penta-notched UWB antenna with sharp frequency edge selectivity using combination of SRR," CSRR, and DGS. Int. J. Electron. Commun., Vol. 93, 154-157, 2016.

    29. Garg, R., P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

    30. Islam, Md T., et al., "Experimental breast phantoms for estimation of breast tumor using microwave imaging systems," IEEE Access, Vol. 6, 78587-78597, 2018.
    doi:10.1109/ACCESS.2018.2885087