Vol. 102
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-05-04
Triple-Band Highly Efficient Multi-Polarization Converter Based on Reflective Metasurface
By
Progress In Electromagnetics Research M, Vol. 102, 127-135, 2021
Abstract
In this paper, a triple-band reflective polarization converter with high efficiency for both linear-to-linear and linear-to-circular polarizations based on a metasurface is proposed, which can rotate a linearly polarized (LP) incident wave into its orthogonal direction with over 90% polarization conversion ratio (PCR) in the bands of 5.5-5.9 GHz (relative bandwidth of 7%) and 12-17.7 GHz (relative bandwidth of 38.4%). Besides, the proposed converter can also transform a linearly polarized incident wave to circularly polarized (CP) wave in the band of 6-12 GHz (relative bandwidth of 66.7%). Additionally, the performance of proposed polarization converter stays in considerable stability with the incident angle increasing 60˚ in circular polarization and 30˚ in linear polarization. Moreover, the physical mechanism of multiple resonances is discussed based on surface current distributions and equivalent circuit model. A prototype of the proposed converter is fabricated and measured, and the experiments and simulations are in great agreement. This polarization converter can be employed to manipulate the polarization of the signal in microwave communication.
Citation
Lili Yuan, Lei Hou, and Zhengping Zhang, "Triple-Band Highly Efficient Multi-Polarization Converter Based on Reflective Metasurface," Progress In Electromagnetics Research M, Vol. 102, 127-135, 2021.
doi:10.2528/PIERM21032703
References

1. Zhang, Z., X. Cao, and L. Sijia, "Broadband metamaterial reflectors for polarization manipulation based on cross/ring resonators," Radioengineering, Vol. 25, No. 3, 436-441, 2016.
doi:10.13164/re.2016.0436

2. Zheng, Q., C. Guo, P. Yuan, Y.-H. Ren, and J. Ding, "Wideband and high-efficiency reflective polarization conversion metasurface based on anisotropic metamaterials," J. Electron. Mater., Vol. 47, No. 5, 2658-2666, 2018.
doi:10.1007/s11664-018-6113-0

3. Beruete, M., M. Navarro-Cıa, M. Sorolla, and I. Campillo, "Polarization selection with stacked hole array metamaterial," J. Appl. Phys., Vol. 103, No. 5, 1-5, 2008.
doi:10.1063/1.2841471

4. Xu, P., S.-Y. Wang, and W. Geyi, "A linear polarization converter with near unity efficiency in microwave regime," J. Appl. Phys., Vol. 121, 144502, 2017.
doi:10.1063/1.4979880

5. Pfeiffer, C. and A. Grbic, "Millimeter-wave transmitarrays for wavefront and polarization control," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 12, 4407-4417, 2013.
doi:10.1109/TMTT.2013.2287173

6. Zhao, J. C. and Y. Z. Cheng, "Ultra-broadband and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region," Opt., Vol. 136, No. 3, 52-57, 2017.

7. Zheng, Q., C. Guo, G. A. E. Vandenbosch, P. Yuan, and J. Ding, "Dual-broadband highly efficient reflective multi-polarisation converter based on multi-order plasmon resonant metasurface," IET Microwaves, Antennas Propag., Vol. 14, No. 9, 967-972, 2020.
doi:10.1049/iet-map.2019.0984

8. Zheng, Q., C. Guo, and J. Ding, "Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 8, 1459-1463, 2018.
doi:10.1109/LAWP.2018.2849352

9. Grady, N. K., et al. "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399

10. Pan, W., Q. Chen, Y. Ma, X. Wang, and X. Ren, "Design and analysis of a broadband terahertz polarization converter with significant asymmetric transmission enhancement," Opt. Commun., Vol. 459, 124901, 2020.
doi:10.1016/j.optcom.2019.124901

11. Ma, X., et al. "An active metamaterial for polarization manipulating," Adv. Opt. Mater., Vol. 2, No. 10, 945-949, 2014.
doi:10.1002/adom.201400212

12. Wang, H. B., Y. J. Cheng, and Z. N. Chen, "Wideband and wide-angle single-layered-substrate linear-to-circular polarization metasurface converter," IEEE Trans. Antennas Propag., Vol. 68, No. 2, 1186-1191, 2020.
doi:10.1109/TAP.2019.2938683

13. Doumanis, E., et al. "Electronically reconfigurable liquid crystal based mm-wave polarization converter," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2302-2307, 2014.
doi:10.1109/TAP.2014.2302844

14. Rutz, F., T. Hasek, M. Koch, H. Richter, and U. Ewert, "Terahertz birefringence of liquid crystal polymers," Appl. Phys. Lett., Vol. 89, 221911, 2006.
doi:10.1063/1.2397564

15. Li, Y., Q. Cao, and Y. Wang, "A wideband multifunctional multilayer switchable linear polarization metasurface," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 7, 1314-1318, 2018.
doi:10.1109/LAWP.2018.2843816

16. Abadi, S. M. A. M. H. and N. Behdad, "Wideband linear-to-circular polarization converters based on miniaturized-element frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 525-534, 2016.
doi:10.1109/TAP.2015.2504999

17. Khan, M. I., B. Hu, Y. Chen, N. Ullah, M. J. I. Khan, and A. U. R. Khalid, "Multiband efficient asymmetric transmission with polarization conversion using chiral metasurface," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 7, 1137-1141, 2020.
doi:10.1109/LAWP.2020.2991521

18. Fahad, A. K., et al. "Triband ultrathin polarization converter for X/Ku/Ka-band microwave transmission," IEEE Microw. Wirel. Components Lett., Vol. 30, No. 4, 351-354, 2020.
doi:10.1109/LMWC.2020.2973040

19. Yang, W., K.-W. Tam, W.-W. Choi, W. Che, and H. T. Hui, "Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6206-6216, 2014.
doi:10.1109/TAP.2014.2361130

20. Li, F., et al. "Compact high-efficiency broadband metamaterial polarizing reflector at microwave frequencies," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 2, 606-614, 2019.
doi:10.1109/TMTT.2018.2881967

21. Jia, Y., Y. Liu, Y. J. Guo, K. Li, and S. Gong, "A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 3291-3295, 2017.
doi:10.1109/TAP.2017.2694879

22. Huang, X., H. Yang, D. Zhang, and Y. Luo, "Ultrathin dual-band metasurface polarization converter," IEEE Trans. Antennas Propag., Vol. 67, No. 7, 4636-4641, 2019.
doi:10.1109/TAP.2019.2911377

23. Khan, M. I., B. Hu, Y. Chen, N. Ullah, M. J. I. Khan, and A. R. Khalid, "Multiband efficient asymmetric transmission with polarization conversion using chiral metasurface," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 7, 1137-1141, 2020.
doi:10.1109/LAWP.2020.2991521

24. Bakal, F., A. Yapici, M. Karaaslan, and O. Akgol, "Microwave absorption performance of hexagonal nano boron nitride doped basalt fabric-reinforced epoxy composites," Aircr. Eng. Aerosp. Technol., Vol. 93, No. 1, 205-211, 2021.
doi:10.1108/AEAT-06-2020-0126

25. Yang, Z., S. Yu, N. Kou, F. Long, Z. Ding, and Z. Zhang, "Ultrathin tri-band reflective cross-polarization artificial electromagnetic metasurface," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 10, 1491-1501, 2020.
doi:10.1080/09205071.2020.1787232

26. Al-Badri, K. S. L., Y. I. Abdulkarim, F. O. Alkurt, and M. Karaaslan, "Simulated and experimental ¨ verification of the microwave dual-band metamaterial perfect absorber based on square patch with a 45◦ diagonal slot structure," Journal of Electromagnetic Waves and Applications, 12, 2021.

27. Sagık, M., "Optimizing the gain and directivity of a microstrip antenna with metamaterial structures by using artificial neural network approach," Wirel. Pers. Commun., Vol. 118, No. 1, 109-124, 2021.
doi:10.1007/s11277-020-08004-8