Vol. 104
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-08-20
The Application of Artificial Magnetic Conductors in the Broadband Radar Cross Section Reduction of the Microstrip Antenna Array
By
Progress In Electromagnetics Research M, Vol. 104, 91-100, 2021
Abstract
A scheme for radar cross section (RCS) reduction of microstrip antenna array in wideband using artificial magnetic conductors (AMC), without compromising the radiation characteristics of the antenna array, is proposed. This design is based on the principle of passive cancellation. The novelty is that the reflection characteristics of the microstrip antenna array are also taken into consideration during the design process of AMCs. The aperiodic configuration is composed of three kinds of AMC lattices with selected dimensions and is applied to the design of microstrip antenna array for the purpose of RCS reduction. The simulated results show that the monostatic RCS is reduced over a wideband from 15.2 to 35 GHz (about 79% relative bandwidth), covering the operation band (20-20.75 GHz) of the antenna array. In addition, compared with the periodic configuration, it has about 4 dB lower maximum bistatic RCS.
Citation
Ping Yang, Jinbo Liu, and Zengrui Li, "The Application of Artificial Magnetic Conductors in the Broadband Radar Cross Section Reduction of the Microstrip Antenna Array," Progress In Electromagnetics Research M, Vol. 104, 91-100, 2021.
doi:10.2528/PIERM21032801
References

1. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2327-2335, May 2012.
doi:10.1109/TAP.2012.2189701

2. Jia, Y., Y. Liu, H. Wang, and S. Gong, "Low RCS microstrip antenna using polarization-dependent frequency selective surface," Electronics Letters, Vol. 50, 978-979, Jul. 2014.

3. Joozdani, M. Z., M. K. Amirhosseini, and A. Abdolali, "Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface," Electronics Letters, Vol. 52, No. 9, 767-768, Apr. 2016.
doi:10.1049/el.2016.0336

4. Paquay, M., J. C. Iriarte, I. Ederra, et al. "Thin AMC structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, Dec. 2007.
doi:10.1109/TAP.2007.910306

5. Galarregui, J. C. I., A. T. Pereda, J. L. M. de Falcon, et al. "Broadband radar cross-section reduction using AMC technology," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6136-6143, Dec. 2013.
doi:10.1109/TAP.2013.2282915

6. Esmaeli, S. H. and S. H. Sedighy, "Wideband radar cross-section reduction by AMC," Electronics Letters, Vol. 52, No. 1, 70-71, Jan. 2016.
doi:10.1049/el.2015.3515

7. Su, J., Y. Lu, H. Zhang, et al. "Ultra-wideband, wide angle and polarization-insensitive specular reflection reduction by metasurface based on parameter-adjustable meta-atoms," Scientific Reports, 11 pages, Feb. 2017.

8. Liu, Y., Y. Hao, K. Li, et al. "Radar cross section reduction of a microstrip based on polarization conversion," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 80-83, 2016.
doi:10.1109/LAWP.2015.2430363

9. Liu, Y., K. Li, Y. Jia, et al. "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces polarization conversion metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 326-331, 2016.
doi:10.1109/TAP.2015.2497352

10. Su, J., C. Kong, Z. Li, et al. "Wideband diffuse scattering and RCS reduction of microstrip antenna array based on coding metasurface," Electronics Letters, Vol. 53, No. 16, 1088-1090, Aug. 2017.
doi:10.1049/el.2017.1656

11. Su, J., H. He, Z. Li, et al. "Uneven-layered coding metamaterial tile for ultra-wideband RCS reduction and diffuse scattering," Scientific Reports, 9 pages, May 2018.

12. Liu, X., J. Gao, L. Xu, et al. "A coding diffuse metasurface for RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 724-727, 2017.
doi:10.1109/LAWP.2016.2601108

13. Han, Z., W. Song, and X. Sheng, "In-band RCS reduction and gain enhancement for a patch antenna array by using a 1-D periodic metasurface reflector," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 4269-4274, Jun. 2019.
doi:10.1109/TAP.2019.2905989

14. Rajabalipanah, H. and A. Abdolali, "Ultrabroadband monostatic/bistatic RCS reduction via high-entropy phase-encoded polarization conversion metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1233-1237, Jun. 2019.
doi:10.1109/LAWP.2019.2913465

15. Yin, L., P. Yang, Y.-Y. Gan, F. Yang, S. Yang, and Z. Nie, "A low cost, low in-band RCS microstrip phased-array antenna with integrated 2-bit phase shifter," IEEE Transactions on Antennas and Propagation, 2020.

16. Yang, H., et al. "Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1239-1248, Mar. 2021.
doi:10.1109/TAP.2020.3016161

17. Han, Y., S. Gong, J. Wang, Y. Li, S. Qu, and J. Zhang, "Reducing RCS of patch antennas via dispersion engineering of metamaterial absorbers," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1419-1425, Mar. 2020.
doi:10.1109/TAP.2019.2925275

18. Han, Y., L. Zhu, Y. Bo, W. Che, and B. Li, "Novel low-RCS circularly polarized antenna arrays via frequency-selective absorber," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 287-296, Jan. 2020.
doi:10.1109/TAP.2019.2939845

19. CST STUDIO SUITE®, CST AG, Germany, www.cst.com.

20. Zhang, C., J. Gao, X. Cao, L. Xu, and J. Han, "Low scattering microstrip antenna array using coding artificial magnetic conductor ground," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 869-872, May 2018, doi: 10.1109/LAWP.2018.2820220.
doi:10.1109/LAWP.2018.2820220

21. Chen, Q., M. Guo, D. Sang, Z. Sun, and Y. Fu, "RCS reduction of patch array antenna using anisotropic resistive metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1223-1227, Jun. 2019, doi: 10.1109/LAWP.2019.2913104.
doi:10.1109/LAWP.2019.2913104

22. Cheng, Y.-F., C. Liao, G. -F. Gao, L. Peng, and X. Ding, "Performance enhancement of a planar slot phased array by using dual-mode SIW cavity and coding metasurface," IEEE Transactions on Antennas and Propagation, 2021.

23. Zarbakhsh, S., M. Akbari, F. Samadi, and A. Sebak, "Broadband and high-gain circularly-polarized antenna with low RCS," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 16-23, Jan. 2019.
doi:10.1109/TAP.2018.2876234