Vol. 103
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-06-09
Prestress Monitoring of Internal Steel Strands Using the Magnetoelastic Inductance Method
By
Progress In Electromagnetics Research M, Vol. 103, 1-13, 2021
Abstract
Monitoring the prestress of prestressed steel strands is important but difficult. The magnetoelastic inductance (MI) method is used to monitor the prestress. A coupling model was established to describe the correlation among stress, magnetism, and inductance. A prestress monitoring system based on the MI effect was proposed. To verify the feasibility of the method, experiments were carried out. The results showed that influenced by the hydration heat of the grouting materials, the fluctuation range of the inductance was 1.033%. When the hydration came to an end, the inductance approached the initial inductance. For internal steel strands, the obtained inductance-prestress relationship was similar to the relationship of external steel strands. Thus, the prestress of the internal steel strands could be monitored by the MI method.
Citation
Lei Liu Senhua Zhang Jianting Zhou Hong Zhang Huiling Liu Kui Tan Leng Liao , "Prestress Monitoring of Internal Steel Strands Using the Magnetoelastic Inductance Method," Progress In Electromagnetics Research M, Vol. 103, 1-13, 2021.
doi:10.2528/PIERM21040902
http://www.jpier.org/PIERM/pier.php?paper=21040902
References

1. Shu, Y., et al., "Embedding technology of Fiber Bragg Grating strain sensor for cable tension monitor," Proceedings of SPIE, 90440H, 2013.

2. Ho, D., et al., "Prestress-force estimation in PSC girder using modal parameters and system identification," Adv. Struct. Eng., Vol. 15, 997-1012, 2016.
doi:10.1260/1369-4332.15.6.997

3. ElBatanouny, M. K., et al., "Acoustic emission monitoring for assessment of prestressed concrete beams," Constr. Build. Mater., Vol. 58, 46-53, 2014.
doi:10.1016/j.conbuildmat.2014.01.100

4. Salamone, S., et al., "Health Monitoring Of Prestressing Tendons In Post-Tensioned Concrete Structures," ASNT Conference on NDE/NDT for Highways & Bridges: Structural Materials Technology, 2011.

5. Bartoli, I., et al., "Nonlinear ultrasonic guided waves for stress monitoring in prestressing tendons for post-tensioned concrete structures," Proceedings of SPIE, 729220-7292211, 2009.
doi:10.1117/12.815614

6. Chen, R. H. L., K. Wissawapaisal, E. Abramovici, and , "An ultrasonic method for measuring tensile forces in a seven-wire prestressing strand," AIP Conference, 2002.

7. Wang, Z. D., Y. Gu, and Y. S. Wang, "A review of three magnetic NDT technologies," J. Magn. Magn. Mater., Vol. 324, 382-388, 2012.
doi:10.1016/j.jmmm.2011.08.048

8. Schoenekess, H. C., et al., "Dynamic load inspection on steel tendons of steel reinforced concrete constructions by means of eddy-current sensors," Proceedings of SPIE — The International Society for Optical Engineering, Vol. 4337, 122-128, 2006.

9. Kim, J., J. Lee, and H. Sohn, "Automatic measurement and warning of tension force reduction in a PT tendon using eddy current sensing," NDT & E International, Vol. 87, 93-99, 2017.
doi:10.1016/j.ndteint.2017.02.002

10. Li, X., et al., "An electromagnetic oscillation method for stress measurement of steel strands," Measurement, Vol. 125, 330-335, 2018.
doi:10.1016/j.measurement.2018.05.014

11. Wang, M. L., "Application of EM stress sensors in large steel cables," Smart Struct. Syst., 5765, 2005.

12. Tang, D., et al., "Study of a steel strand tension sensor with difference single bypass excitation structure based on the magneto-elastic effect," Smart Mater. Struct., Vol. 17, 25019, 2008.
doi:10.1088/0964-1726/17/2/025019

13. Cappello, C., et al., "Calibration of elasto-magnetic sensors on in-service cable-stayed bridges for stress monitoring," Sensors (Basel, Switzerland), Vol. 18, 466, 2018.
doi:10.3390/s18020466

14. Duan, Y., et al., "Development of Elasto-Magneto-Electric (EME) sensor for in-service cable force monitoring," Int J. Struct. Stab. Dy., Vol. 16, 1640016, 2016.
doi:10.1142/S0219455416400162

15. Zhang, S., et al., "Cable tension monitoring based on the elasto-magnetic effect and the self-induction phenomenon," Materials, Vol. 12, 2230, 2019.
doi:10.3390/ma12142230

16. Liu, L., et al., "Stress monitoring of prestressed steel strand based on magnetoelastic effect under weak magnetic field considering material strain," Progress In Electromagnetics Research C, Vol. 104, 157-170, 2020.
doi:10.2528/PIERC20052903

17. Seekircher, J. and B. Hoffmann, "New magnetoelastic force sensor using amorphous alloys," Sensors and Actuators A: Physical, Vol. 22, 401-405, 1990.
doi:10.1016/0924-4247(89)80002-0

18. Jiles, D. C., J. B. Thoelke, and M. K. Devine, "Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis," IEEE T. Magn., Vol. 28, 27-35, 1992.
doi:10.1109/20.119813

19. Jiles, D. C., "Theory of the magnetomechanical effect," Journal of Physics D: Applied Physics, Vol. 28, 1537-1546, 1995.
doi:10.1088/0022-3727/28/8/001

20. Sablik, M. J., et al., "A model for hysteretic magnetic properties under the application of noncoaxial stress and field," J. Appl. Phys., Vol. 74, 480-488, 1993.
doi:10.1063/1.355257

21. Zhang, S., et al., "“Influence of cable tension history on the monitoring of cable tension using magnetoelastic inductance method," Structural Health Monitoring, 84060946, 2021.

22. Ata, N., S. Mihara, and M. Ohtsu, "“Imaging of ungrouted tendon ducts in prestressed concrete by improved SIBIE," NDT & E International, Vol. 40, No. 3, 258-264, 2007.
doi:10.1016/j.ndteint.2006.10.008

23. Zapata, J. , R. Vilar, and R. Ruiz, "An adaptive-network-based fuzzy inference system for classification of welding defects," NDT & E International, Vol. 43, No. 3, 191-199, 2010.
doi:10.1016/j.ndteint.2009.11.002