Vol. 103
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-06-27
Statistical Channel Models for Millimeter-Wave Wireless Data Centers
By
Progress In Electromagnetics Research M, Vol. 103, 61-70, 2021
Abstract
This paper presents a set of statistical channel models based on 60 GHz radio measurements in a server room. The channel models are developed for possible use-cases, corresponding to potential deployment scenarios in wireless data centers (WDCs). A simple parametric channel model is used to model both the deterministic and stochastic channel parameters in the delay domain, within the 57-64 GHz unlicensed band. A simulation framework is accordingly provided to generate channel realizations for WDC use cases. The accuracy of the simulation framework is verified using the delay spread as a validation metric. The reported models are useful for practical system design and evaluation of WDCs millimeter-wave systems.
Citation
Mohammed Zakarya Zaaimia Rachida Touhami Larbi Talbi Mourad Nedil Mustapha Yagoub , "Statistical Channel Models for Millimeter-Wave Wireless Data Centers," Progress In Electromagnetics Research M, Vol. 103, 61-70, 2021.
doi:10.2528/PIERM21042501
http://www.jpier.org/PIERM/pier.php?paper=21042501
References

1. Hamza, A. S., J. S. Deogun, and D. R. Alexander, "Wireless communication in data centers: A survey," IEEE Communications Surveys & Tutorials, Vol. 18, No. 3, 1572-1595, 2016.
doi:10.1109/COMST.2016.2521678

2. Cheng, C. -L., S. Sangodoyin, and A. Zajic, "Thz cluster-based modeling and propagation characterization in a data center environment," IEEE Access, Vol. 8, No. 56 , 544-558, 2020.

3. Cheng, C. -L. and A. Zajic, "Characterization of propagation phenomena relevant for 300 GHz wireless data center links," IEEE Transactions on Antennas and Propagation, 2019.

4. Gentile, C., P. B. Papazian, R. Sun, J. Senic, and J. Wang, "Quasi-deterministic channel model parameters for a data center at 60 GHz," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 808-812, 2018.
doi:10.1109/LAWP.2018.2817066

5. Celik, A., A. AlGhadhban, B. Shihada, and M. Alouini, "Design and provision of traffic grooming for optical wireless data center networks," IEEE Transactions on Communications, Vol. 67, No. 3, 2245-2259, 2019.
doi:10.1109/TCOMM.2018.2885808

6. Katayama, Y., K. Takano, Y. Kohda, N. Ohba, and D. Nakano, "Wireless data center networking with steered-beam mmwave links," 2011 IEEE Wireless Communications and Networking Conference, 2179-2184, IEEE, 2011.
doi:10.1109/WCNC.2011.5779470

7. TG11ay, "IEEE 802.11ay use cases. IEEE standard 802.11-2015/625," Tech. Rep., IEEE, 2015.

8. Zhou, P., K. Cheng, X. Han, X. Fang, Y. Fang, R. He, Y. Long, and Y. Liu, "IEEE 802.11 ay-based mmWave WLANs: Design challenges and solutions," IEEE Communications Surveys & Tutorials, Vol. 20, No. 3, 1654-1681, 2018.
doi:10.1109/COMST.2018.2816920

9. Ghasempour, Y., C. R. da Silva, C. Cordeiro, and E. W. Knightly, "IEEE 802.11 ay: Next-generation 60 GHz communication for 100 Gb/s Wi-Fi," IEEE Communications Magazine, Vol. 55, No. 12, 186-192, 2017.
doi:10.1109/MCOM.2017.1700393

10. Siamarou, A. G., P. Theofilakos, and A. G. Kanatas, "60 GHz wireless links for HDTV: Channel characterization and error performance evaluation," Progress In Electromagnetics Research, Vol. 36, 195-205, 2013.
doi:10.2528/PIERC12120507

z11. Shrivastava, P. and T. Rama Rao, "Performance investigations with antipodal linear tapered slot antenna on 60 GHz radio link in a narrow hallway environment," Progress In Electromagnetics Research, Vol. 58, 69-77, 2015.
doi:10.2528/PIERC15052104

12. Zaaimia, M., R. Touhami, L. Talbi, M. Nedil, and M. Yagoub, "60-GHz statistical channel characterization for wireless data centers," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 976-979, 2015.

13. Zaaimia, M., R. Touhami, V. Fono, L. Talbi, and M. Nedil, "60 GHz wireless data center channel measurements: Initial results," 2014 IEEE International Conference on Ultra-WideBand (ICUWB), 57-61, IEEE, 2014.
doi:10.1109/ICUWB.2014.6958951

14. MegaPhase, Megaphase v band test cable, MegaPhase, Tech. Rep. [Online]. Available: www.megaphase.com/wp-content/uploads/2017/01/MegaPhase-V-Band-Test-Cable.pdf..

15. Millitech, Standard Gain Horn (SGH) 15, smithsinterconnect, Tech. Rep. [Online]. Avail-able: www.smithsinterconnect.com/products/defence-antenna-systems/ antenna-quasioptical-products/standard-gain-horn-(sgh)/..

16. Tariq, S. A. M., C. L. Despins, S. Affes, and C. Nerguizian, "Angular dispersion of a scattered underground wireless channel at 60 GHz," IEEE Access, Vol. 8, No. 67 , 572-580, 2020.

17. Ghaddar, M., I. B. Mabrouk, M. Nedil, K. Hettak, and L. Talbi, "Deterministic modeling of 5g millimeter-wave communication in an underground mine tunnel," IEEE Access, Vol. 7, No. 116 , 519-528, 2019.

18. Kyro, M., K. Haneda, J. Simola, K.-I. Takizawa, H. Hagiwara, and P. Vainikainen, "Statistical channel models for 60 GHz radio propagation in hospital environments," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1569-1577, 2011.
doi:10.1109/TAP.2011.2180349

19. Haneda, K., J. Jarvelainen, A. Karttunen, M. Kyro, and J. Putkonen, "A statistical spatio-temporal radio channel model for large indoor environments at 60 and 70 GHz," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2694-2704, 2015.
doi:10.1109/TAP.2015.2412147