Vol. 104

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-08-10

Characterization of Dielectric Properties of Non-Magnetic Materials Using Superstrate-Loaded Antennas

By Saininad Naik, Maria Pour, and Curtis Hill
Progress In Electromagnetics Research M, Vol. 104, 39-47, 2021
doi:10.2528/PIERM21071210

Abstract

A free-space and non-invasive measurement technique to characterize the dielectric properties of a non-magnetic NASA-developed composite material is presented. To estimate the dielectric properties of the composite material, the material under test is placed as a superstrate over a pre-characterized benchmark antenna. The reflection coefficients and gain of the superstrate-loaded antenna are then utilized to estimate the relative permittivity and loss tangent of the composite under test, respectively. Using numerical analyses and measurements of the benchmark antenna loaded with the superstrate, the aforementioned properties are estimated to be 6 and ~0.12, respectively. To validate the accuracy of the method, a square microstrip patch antenna is also designed on a grounded NASA-developed composite material at the ISM band.

Citation


Saininad Naik, Maria Pour, and Curtis Hill, "Characterization of Dielectric Properties of Non-Magnetic Materials Using Superstrate-Loaded Antennas," Progress In Electromagnetics Research M, Vol. 104, 39-47, 2021.
doi:10.2528/PIERM21071210
http://www.jpier.org/PIERM/pier.php?paper=21071210

References


    1. Nelson, S. O., "Agricultural applications of dielectric measurements," IEEE Trans. Dielectr. Electr. Insulat., Vol. 13, 688-702, Aug. 2006.
    doi:10.1109/TDEI.2006.1667726

    2. Baker-Jarvis, J., R. G. Geyer, J. H. Grosvenor, M. D. Janezic, C. A. Jones, B. Riddle, and C. M. Weil, "Dielectric characterization of low-loss materials - A comparison of techniques," IEEE Trans. Dielectr. Electr. Insulat., Vol. 5, 571-577, Aug. 1998.
    doi:10.1109/94.708274

    3. Von Hippel, A. R., Dielectric Materials and Applications, Wiley, New York, 1961.

    4. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, Nov. 1970.
    doi:10.1109/TIM.1970.4313932

    5. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, Jan. 1974.
    doi:10.1109/PROC.1974.9382

    6. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 38, 789-793, Jun. 1989.
    doi:10.1109/19.32194

    7. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability at magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 39, 387-394, Apr. 1990.
    doi:10.1109/19.52520

    8. Boybay, M. S. and O. M. Ramahi, "Material characterization using complementary split-ring resonators," IEEE Trans. Instrum. Meas., Vol. 61, No. 11, 3039-3046, Nov. 2012.
    doi:10.1109/TIM.2012.2203450

    9. Lee, C. and C. Yang, "Single-compound complementary split-ring resonator for simultaneously measuring the permittivity and thickness of dual-layer dielectric materials," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 6, 2010-2023, Apr. 2015.
    doi:10.1109/TMTT.2015.2418768

    10. Lee, C.-S. and C.-L. Yang, "Complementary split-ring resonators for measuring dielectric constants and loss tangents," IEEE Microw. Wireless Comp. Lett., Vol. 24, No. 8, 563-565, Aug. 2014.
    doi:10.1109/LMWC.2014.2318900

    11. Bogosanovich, M., "Microstrip patch sensor for measurement of the permittivity of homogeneous dielectric materials," IEEE Trans. Instrum. Meas., Vol. 49, No. 5, 1144-1148, Oct. 2000.
    doi:10.1109/19.872944

    12. High Frequency Structure Simulator (HFSS 18.0), , Canonsburg, PA, Boston, MA: ANSYS. [Online]. Available: http://www.ansoft.com/products/hf/hfss.
    doi:10.1109/19.872944

    13. Rogers Corporation, "RT/duroid 5870/5880 high frequency laminates,", 5870/5880 datasheet, [Revised Jun. 2017].

    14. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., John Wiley & Sons Inc., Hoboken, NJ, USA, 2016.

    15. Oberhart, M. L., Y. T. Lo, and R. Q. H. Lee, "New simple feed network for an array module of four microstrip elements," Electron. Lett., Vol. 23, No. 9, 436-437, Apr. 1987.
    doi:10.1049/el:19870314

    16. Huynh, T. and K. F. Lee, "Cross polarization characteristics of rectangular patch antennas," 1988 IEEE AP-S. Int. Symp. Antennas Propag., Syracuse, NY, Jun. 6-10, 1988.

    17. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Boston, MA, USA, 2001.

    18. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas Wireless Propag. Lett., Vol. 9, 57-59, Feb. 2010.
    doi:10.1109/LAWP.2010.2042565

    19. Mitra, D., B. Ghosh, A. Sarkhel, and S. R. B. Chaudhuri, "A miniaturized ring slot antenna design with enhanced radiation characteristics," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 300-305, Jan. 2016.
    doi:10.1109/TAP.2015.2496628

    20. Li, D., Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 6018-6023, Aug. 2012.
    doi:10.1109/TAP.2012.2213231

    21. Yang, H. Y. and H. G. Alexopoulau, "Gain enhancement methods for printed circuit antennas through multiple superstrates," IEEE Trans. Antennas Propag., Vol. 35, No. 7, 860-863, Jul. 1987.
    doi:10.1109/TAP.1987.1144186

    22. Kramer, B. A., M. Lee, C.-C. Chen, and J. L. Volakis, "Design and performance of an ultrawide-band ceramic-loaded slot spiral," IEEE Trans. Antennas Propag., Vol. 53, No. 7, 2193-2199, Jul. 2005.
    doi:10.1109/TAP.2005.850715

    23. Al-Tarifi, M., D. Anagnostou, A. Amert, and K. Whites, "Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1898-1908, Feb. 2013.
    doi:10.1109/TAP.2012.2231931

    24. Asaadi, M. and A. Sebak, "Gain and bandwidth enhancement of 2×2 square dense dielectric patch antenna array using a holey superstrate," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1808-1811, Mar. 2017.

    25. Ta, S. X. and T. K. Nguyen, "AR bandwidth and gain enhancement of patch antenna using single dielectric superstrate," Electron. Lett., Vol. 53, No. 15, 1015-1017, Jul. 2017.
    doi:10.1049/el.2017.1676