Vol. 104
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-08-26
Torque Ripple Online Optimization of Switched Reluctance Motor Based on Torque Slope Characteristics
By
Progress In Electromagnetics Research M, Vol. 104, 111-122, 2021
Abstract
In this paper, a direct instantaneous torque control (DITC) optimization scheme based on adaptive dynamic hysteresis (ADH) strategy is proposed for switched reluctance motor (SRM) drive system. This method can further improve the torque tracking accuracy, reduce torque ripple and solve the problem of smooth transition between SRM phases. According to the torque generation characteristics and hysteresis rule of DITC, the traditional hysteresis rule is modified, and the sampled discrete torque slope data are compensated online. Taking the slope curve after compensation as the standard, the upper and lower limits of the hysteresis controller are assigned to achieve the control effect of hysteresis dynamic regulation. The effectiveness of the method is verified by simulation under diferent operating conditions.
Citation
Hanbing Yang, Aide Xu, Jianping Cheng, and Jinghao Sun, "Torque Ripple Online Optimization of Switched Reluctance Motor Based on Torque Slope Characteristics," Progress In Electromagnetics Research M, Vol. 104, 111-122, 2021.
doi:10.2528/PIERM21072502
References

1. Zhu, Y., C. Zhao, J. Zhang, and Z. Gong, "Vibration control for electric vehicles with in-wheel switched reluctance motor drive system," IEEE Access, Vol. 8, 7205-7216, 2020.
doi:10.1109/ACCESS.2020.2964582

2. Ho, C., J. Wang, K. Hu, and C. Liaw, "Development and operation control of a switched-reluctance motor driven flywheel," IEEE Transactions on Power Electronics, Vol. 34, No. 1, 526-537, 2019.
doi:10.1109/TPEL.2018.2814790

3. Li, S., S. Zhang, T. G. Habetler, and R. G. Harley, "Modeling, design optimization, and applications of switched reluctance machines - A review," IEEE Transactions on Industry Applications, Vol. 55, No. 3, 2660-2681, 2019.
doi:10.1109/TIA.2019.2897965

4. Mousavi-Aghdam, S. R., M. R. Feyzi, N. Bianchi, and M. Morandin, "Design and analysis of a novel high-torque stator-segmented SRM," IEEE Transactions on Industrial Electronics, Vol. 63, No. 3, 1458-1466, 2016.
doi:10.1109/TIE.2015.2494531

5. Hu, Y., W. Ding, T. Wang, et al. "Investigation on a multimode switched reluctance motor: Design, optimization, electromagnetic analysis, and experiment," IEEE Transactions on Industrial Electronics, Vol. 64, No. 12, 9886-9895, 2017.
doi:10.1109/TIE.2017.2694383

6. Xu, Z., M.-J. Kim, D. Lee, and J. Ahn, "Characteristics analysis and comparison of conventional and segmental rotor type 12/8 switched reluctance motors," 2016 IEEE Industry Applications Society Annual Meeting, 1-7, 2016.

7. Mikail, R., I. Husain, Y. Sozer, et al. "A fixed switching frequency predictive current control method for switched reluctance machines," 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 843-847, 2012.
doi:10.1109/ECCE.2012.6342731

8. Mikail, R., I. Husain, M. S. Islam, Y. Sozer, et al. "Four-quadrant torque ripple minimization of switched reluctance machine through current profiling with mitigation of rotor eccentricity problem and sensor errors," IEEE Transactions on Industry Applications, Vol. 51, No. 3, 2097-2104, 2015.
doi:10.1109/TIA.2014.2365715

9. Dowlatshahi, M., S. M. Saghaian-Nejad, M. Afshoon, et al. "High efficient torque control of switched reluctance motor taking nonlinear and saturation effects into account," 4th Annual International Power Electronics, 49-54, 2013.

10. Lee, D., J. Liang, Z. Lee, et al. "A simple nonlinear logical torque sharing function for low-torque ripple SR drive," IEEE Transactions on Industry Applications, Vol. 56, No. 8, 3021-3028, 2009.

11. Mitra, R., W. Uddin, Y. Sozer, et al. "Torque ripple minimization of Switched Reluctance Motors using speed signal based phase current profiling," 2013 IEEE Energytech, 1-5, 2013.

12. Xu, A., C. Shang, J. Chen, J. Zhu, and L. Han, "A new control method based on DTC and MPC to reduce torque ripple in SRM," IEEE Access, Vol. 7, 68584-68593, 2019.
doi:10.1109/ACCESS.2019.2917317

13. Xu, A., W. Zhang, L. Han, et al. "Minimising torque ripple of switched reluctance motor by applying deadbeat-direct torque and flux control," IET Electric Power Applications, Vol. 13, No. 11, 1883-1890, 2019.
doi:10.1049/iet-epa.2018.5441

14. Pittam, K. R., D. Ronanki, and P. Parthiban, "Efficiency improvement of four-phase switched reluctance motor drive using new direct torque control strategy," IET Electric Power Applications, Vol. 14, No. 1, 52-61, 2020.
doi:10.1049/iet-epa.2019.0432

15. Yan, N., X. Cao, and Z. Deng, "Direct torque control for switched reluctance motor to obtain high Torque-Ampere ratio," IEEE Transactions on Industrial Electronics, Vol. 66, No. 7, 5144-5152, 2019.
doi:10.1109/TIE.2018.2870355

16. Weiss, C. P., S. Schoeler, and R. Doncker, "Direct instantaneous torque control for switched reluctance machines considering mutual coupling," The Journal of Engineering, Vol. 17, 3701-3704, 2019.
doi:10.1049/joe.2018.8136

17. Gan, C., Q. Sun, Y. Hu, et al. "Low-cost direct instantaneous torque control for switched reluctance motors with bus current detection under soft-chopping mode," IET Power Electronics, Vol. 9, No. 3, 482-490, 2016.
doi:10.1049/iet-pel.2015.0370

18. Wang, S., Z. Hu, and X. Cui, "Research on novel direct instantaneous torque control strategy for switched reluctance motor," IEEE Access, Vol. 8, 66910-66916, 2020.
doi:10.1109/ACCESS.2020.2986393

19. Song, S., G. Fang, R. Hei, J. Jiang, et al. "Torque ripple and efficiency online optimization of switched reluctance machine based on torque per ampere characteristics," IEEE Transactions on Power Electronics, Vol. 35, No. 9, 9608-9616, 2020.
doi:10.1109/TPEL.2020.2974662

20. Sun, Q., J. Wu, and C. Gan, "Optimized direct instantaneous torque control for SRMs with efficiency improvement," IEEE Transactions on Industrial Electronics, Vol. 68, No. 3, 2072-2082, 2021.
doi:10.1109/TIE.2020.2975481