Vol. 105
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-10-16
A Pentagonal Slit Bow-Tie Patch Antenna with a Novelty Design for MANPADS Guiding Simulator for Defense
By
Progress In Electromagnetics Research M, Vol. 105, 89-98, 2021
Abstract
The unique bow-tie shaped pentagonal slit microstrip patch antenna has been particularly developed, manufactured, and tested for defense applications such as gunner training systems. The substrate is made of 3.2 mm thick FR4 material with a dielectric constant of 4.3. With a conductivity of 5.96×107 Siemens/m copper is used as a pentagonal bow tie patch. During the training period of MANPADS, previously wired system is used, and it is replaced by a completely wireless system with a specially designed antenna along with an ultrasonic sensor and processor unit. The innovation of antenna is pentagonal slit created on patch, and it increases fringing effects. It attains 6.523 GHz with a return loss of -22.5 dB, maximum gain of 5.84 dB, and better VSWR of 1.16. CST Microwave Studio 2016 simulates the proposed antenna characteristics such as gain, return loss, radiation pattern, and VSWR.
Citation
Geetha Palaniappan Dhamodharan Sriram Kumar , "A Pentagonal Slit Bow-Tie Patch Antenna with a Novelty Design for MANPADS Guiding Simulator for Defense," Progress In Electromagnetics Research M, Vol. 105, 89-98, 2021.
doi:10.2528/PIERM21072901
http://www.jpier.org/PIERM/pier.php?paper=21072901
References

1. MANPADS Manual, http://www.fas.org/programs/ssp/asmp/MANPADS.html.

2. MANPADS Manual, http://www.globalsecurity.org/military/library/policy/army/accp/ad0575/.

3., "System training plan for man-portable air defense system (MANPADS),", http://nisat.prio.org/.

4. Manpad, S., , http://hdl.handle.net/10945/56170.

5. Rahim, M. K. A. and M. Z. A. Abdul Aziz, "Bow-tie microstrip antenna design," IEEE Conference, 2015.

6. Thaher, R. H. and S. N. Alsaidy, "New compact pentagonal microstrip patch antenna for wireless communications applications," American Journal of Electromagnetics and Applications, Vol. 3, No. 6, 53-64, 2015, doi: 10.11648/j.ajea.20150306.13.

7. Geethapalaniappan, S. D., "Comparison of different types of graphene microstrip patch terahertz antennas and performance analysis of penta model on dissimilar substrates," Solid State Technoloy, Vol. 63, No. 6, 2020.

8. Mahalakshmi, N. and A. Thenmozhi, "Design of hexagon shape bow-tie patch antenna for implantable biomedical application,", 235-239, June 2017, https://www.sciencedirect.com/science/journal/11100168/56/2, https://doi.org/10.1016/j.aej.2017.01.028.

9. Anusha, N., M. Sujatha, V. Srikanth, R. S. Kumar, and T. J. V. Varma, "Design and investigation of terahertz antenna using different configurations,", 978-1-5090-5686-6/17/$31.00 c2017 IEEE.

10. Tecpoyotl-Torres, M., J. G. Vera-Dimas, R. Vargas-Bernal, M. Torres-Cisneros, A. Zamudio-Lara, and V. Grimalsky, "Pentagonal microstrip antenna equivalent to a circular microstrip antenna for GPS operation frequency," Programación Matemáticay Software, Vol. 1, No. 2, ISSN: 2007-3283, 2009.

11., Land Target Training System for MANPAD Missile System - Defence Manual.

12., Integrated Air Defense Combat Simulator (IADCS) - Defence Manual.

13. Cho, S. H. and A. P. Chadrakasan, "A 6.5-GHz energy-efficient BFSK modulator for wireless sensor applications," IEEE Journal of Solid-State Circuits, Vol. 39, No. 5, May 2004.

14. Mishra, R., P. Kuchhal, and A. Kumar, "Effect of height of the substrate and width of the patch on the performance characteristics of microstrip antenna," International Journal of Electrical and Computer Engineering, 1441-1445, December 2015, DOI: 10.11591/ijece.v5i6.

15., Integrated Air Defence Combat Simulator (IADCS) Manual, zen-iadcs-integrated-air-defence-combat-simulator-brochure.pdf.

16. Deshmukh, K. P. and S. S. Mahavidyalaya, "Wireless transceiver module HC-12 based automatic water-level monitoring and control system," International Research Journal on Advanced Science Hub (IRJASH), October 2020, https://rspsciencehub.com/article_1403_9ec1f309fb63126b7131a4cea726597c.pdf.
doi:10.14429/dsj.68.11827

17. Kumar, A. and S. Raghavan, "Bandwidth enhancement of substrate integrated waveguide cavity-backed bow-tie-complementary-ring-slot antenna using a shorted-via," Defence Science Journal, Vol. 68, No. 2, 197-202, Mar. 2018, DOI: 10.14429/dsj.68.11827.

18. Awl, H. N., Y. I. Abdulkarim, L. Deng, M. Bakır, F. F. Muhammadsharif, M. Karaaslan, E. Unal, and H. Luo, "Bandwidth improvement in bow-tie microstrip antennas: The effect of substrate type and design dimensions," Appl. Sci., 10,504, 2020, doi: 10.3390/app10020504.

19. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Beam-steerable microstrip-fed bow-tie antenna array for fifth generation cellular communications," IEEE Xplore 2016 10th European Conference on Antennas and Propagation (EuCAP), 2016.
doi:10.1049/iet-map.2017.0421

20. Behera, D., B. Dwivedy, D. Mishra, and S. K. Behera, "Design of a CPW fed compact bow-tie microstrip antenna with versatile frequency tenability," IET Microw. Antennas Propag., Vol. 12, No. 6, 841-849, 2018.

21. Kilaru, V. N. R., R. J. Hadi, H. Abufanas, C. Sandhagen, and A. Bangert, "Design of a dual-band bow-tie slot antenna with two feeds for radiometric medical applications," IEEE Explore-2018 Conference on Signal Processing and Communication Engineering Systems (SPACES), 2018.

22. Chau, Y.-F. C., C.-T. C. Chao, J.-Y. Rao, H.-P. Chiang, C. M. Lim, R. C. Lim, and N. Y. Voo, "Tunable optical performances on a periodic array of plasmonic bowtie nanoantennas with hollow cavities," Nanoscale Research Letters, Vol. 11, No. 411, 2016, DOI: 10.1186/s11671-016-1636-x.
doi:10.1371/journal.pone.0169033

23. Shafiei, N. M., M. Moghavvemi, and W. N. L. W. Mahadi, "The parametric study and fine-tuning of bow-tie slot antenna with loaded stub," PLoS One, Vol. 12, No. 1, e0169033, Jan. 23, 2017, doi: 10.1371/journal.pone.0169033, eCollection 2017.
doi:10.1109/TAP.2017.2710227

24. Sallam, M. O., S. M. Kandil, V. Volski, G. A. E. Vandenbosch, and E. A. Soliman, "Wideband CPW-fed flexible bow-tie slot antenna for WLAN/WiMax systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, Aug. 2017.