Vol. 105
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-09-30
Numerical Computation of SAR in Human Head with Transparent Shields Using Transmission Line Method
By
Progress In Electromagnetics Research M, Vol. 105, 31-44, 2021
Abstract
The tremendous proliferation of mobile smartphone handsets and their usage worldwide makes human life comfortable, while the radiation hazards associated with them are alarming, especially among children. There is a necessity to minimize the Electro Magnetic Field (EMF) radiation levels. For the evaluation of Radio Frequency (RF) radiation from the mobile phone, one of the dosimetric parameters used is the Specific Absorption Rate (SAR). The RF radiation can be mitigated by incorporating a barrier or a shield of suitable material in the mobile handset design. In the proposed work, the analysis of SAR evaluation absorbed by the human head is determined with the performance of the shielding material called Shielding Effectiveness (SE) using Transmission Line Method (TLM) mathematically. The proposed shielding materials are composed of flexible and transparent thin films. Flexible and transparent thin shielding materials are advantageous over the other shielding materials in reduced size, less weight, non-corrosiveness, and easy processing. These materials include highly conductive Silver film, Silver Nanowire(AgNW) doped with PDDA (poly(diallyldimethyl-ammonium chloride)) polymer single shields, and a laminated shield comprising AgNW/PDDA with PEDOT:PSS (poly(3,4-ethylenedioxythiophene)poly-styrene sulfonate) polymer as lamination. The SARs of planar multi-layered human head models for different ages are estimated at various mobile frequencies with these shields. Under four-layered head models at 6 GHz, adult and child heads absorb 0.0006 W/Kg and 0.000024 W/Kg of RF radiation using pristine Silver film as a single shield. Using a single shield of Ag nanowire and PDDA, the adult and child heads absorb SARs of 0.00058 W/Kg and 0.000023 W/Kg, respectively. With the laminated shield of AgNW/PDDA and PEDOT:PSS as coating material, the same models are exposed to minimal amounts of 0.00054 W/Kg and 0.000012 W/Kg of SAR. At 6 GHz frequency, under seven-layered head models, an adult and a child's head absorb 0.000047 W/Kg and 0.000002 W/Kg of power, respectively, using Ag film. With AgNW/PDDA shield, the adult and child heads absorb a SAR of 0.000046 W/Kg and 0.0000019 W/Kg, respectively. The SARs of 0.000043 W/Kg and a negligible value of 0.0000018 W/Kg are absorbed by adult and child heads individually with the help of AgNW/PDDA/PEDOT:PSS laminated shield. The results exhibit a significant amount of reduction in Specific Absorption Rate with transparent shielding materials compared to SAR absorbed by the head without any shield. This maximum RF exposure rate reduction from mobile phones with the Ag Nanowire/PDDA/PEDOT:PSS laminated shield is achieved for a seven-layered child head model.
Citation
Pudipeddi Sai Spandana Pappu V. Y. Jayasree , "Numerical Computation of SAR in Human Head with Transparent Shields Using Transmission Line Method," Progress In Electromagnetics Research M, Vol. 105, 31-44, 2021.
doi:10.2528/PIERM21080405
http://www.jpier.org/PIERM/pier.php?paper=21080405
References

1. Lak, A. and H. Oraizi, "Evaluation of SAR distribution in six-layer human head model," International Journal of Antennas and Propagation, Vol. 2013, 2013.
doi:10.1155/2013/580872

2. https://www.fcc.gov/general/specific-absorption-rate-sar-cellular-telephones.

3. He, L. and S. C. Tjong, "Nanostructured transparent conductive films: Fabrication, characterization and applications," Materials Science and Engineering: R: Reports, Vol. 109, 1-101, 2016.
doi:10.1016/j.mser.2016.08.002

4. Yang, Y., S. Chen, W. Li, P. Li, J. Ma, B. Li, X. Zhao, Z. Zhu, H. Chang, L. Xiao, H. Xu, and Y. Liu, "Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding," Acs Nano, Vol. 14, No. 7, 8754-8765, 2020.
doi:10.1021/acsnano.0c03337

5. Wan, Y. J., X. Y. Wang, X. M. Lis, S. Y. Liao, Z. Q. Lin, Y. G. Hu, T. Zhao, X. L. Zeng, C. H. Li, S. H. Yu, P. L. Zhu, R. Sun, and C. P. Wong, "Ultrathin densified carbon nanotube film with ``metal-like'' conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness," ACS Nano, Vol. 14, No. 10, 14134-14145, 2020.
doi:10.1021/acsnano.0c06971

6. Chen, Y., L. Pang, Y. Li, H. Luo, G. Duan, C. Mei, W. Xu, W. Zhou, K. Liu, and S. Jiang, "Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding," Composites Part A: Applied Science and Manufacturing, Vol. 135, 105960, 2020.
doi:10.1016/j.compositesa.2020.105960

7. Alibakhshikenari, M., et al., "A comprehensive survey of metamaterial transmission-line based antennas: Design, challenges, and applications," IEEE Access, Vol. 8, 144778-144808, 2020.
doi:10.1109/ACCESS.2020.3013698

8. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Compact single-layer traveling-wave antenna designusing metamaterial transmission lines," Radio Science, Vol. 52, No. 12, 1510-1521, 2017.
doi:10.1002/2017RS006313

9. Alibakhshikenari, M., B. S. Virdee, A. Ali, and E. Limiti, "Extended aperture miniature antenna based on CRLH metamaterials for wireless communication systems operating over UHF to C-band," Radio Science, Vol. 53, No. 2, 154-165, 2018.
doi:10.1002/2017RS006515

10. Alibakhshi-Kenari, M., et al., "A new miniature ultra wide band planar microstrip antenna based on the metamaterial transmission line," 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 293-297, 2012.
doi:10.1109/APACE.2012.6457679

11. Ojaroudi, P., et al., "Mobile-phone antenna array with diamond-ring slot elements for 5G massive MIMO systems," Electronics, Vol. 8, No. 5, 521, 2019.
doi:10.3390/electronics8050521

12. Tamim, A. M., M. R. I. Faruque, M. U. Khandaker, M. T. Islam, and D. A. Bradley, "Electromagnetic radiation reduction using novel metamaterial for cellular applications," Radiation Physics and Chemistry, Vol. 178, 108976, 2021.
doi:10.1016/j.radphyschem.2020.108976

13. Belrhiti, L., F. Riouch, A. Tribak, J. Terhzaz, and A. M. Sanchez, "Investigation of dosimetry in four human head models for planar monopole antenna with a coupling feed for LTE/WWAN/WLAN internal mobile phone," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, 494-513, 2017.
doi:10.1590/2179-10742017v16i2748

14. Hout, S. and J. Y. Chung, "Design and characterization of a miniaturized implantable antenna in a seven-layer brain phantom," IEEE Access, Vol. 7, 162062-162069, 2019.
doi:10.1109/ACCESS.2019.2951489

15. Drossos, A., V. Santomaa, and N. Kuster, "The dependence of electromagnetic energy absorption upon human head tissue composition in the frequency range of 300-3000 MHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1988-1995, 2000.
doi:10.1109/22.884187

16. Rajagopal, B. and L. Rajasekaran, "SAR assessment on three layered spherical human head model irradiated by mobile phone antenna," Human-centric Computing and Information Sciences, Vol. 4, No. 1, 1-11, 2014.
doi:10.1186/s13673-014-0010-1

17. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine & Biology, Vol. 41, No. 11, 2271, 1996.
doi:10.1088/0031-9155/41/11/003

18. http://niremf.ifac.cnr.it/docs/DIELECTRIC/AppendixC.html.

19. http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.

20. Ibrani, M., L. Ahma, and E. Hamiti, "The age-dependence of microwave dielectric parameters of biological tissues," Microwave Materials Characterization, Vol. 10, 51400, 2012.

21. Ibrani, M., L. Ahma, E. Hamiti, and J. Haxhibeqiri, "Derivation of electromagnetic properties of child biological tissues at radio frequencies," Progress In Electromagnetics Research Letters, Vol. 25, 87-100, 2011.
doi:10.2528/PIERL11052002

22. Fomon, S. J., F. Haschke, E. E. Ziegler, and S. E. Nelson, "Body composition of reference children from birth to age 10 years," The American Journal of Clinical Nutrition, Vol. 35, No. 5, 1169-1175, 1982.
doi:10.1093/ajcn/35.5.1169

23. Chumlea, W. C., S. S. Guo, C. M. Zeller, N. V. Reo, R. N. Baumgartner, P. J. Garry, J. Wang, R. N. Pierson, Jr., S. B. Heymsfield, and R. M. Siervogel, "Total body water reference values and prediction equations for adults," Kidney International, Vol. 59, No. 6, 2250-2258, 2001.
doi:10.1046/j.1523-1755.2001.00741.x

24. Wang, J., O. Fujiwara, and S. Watanabe, "Approximation of aging effect on dielectric tissue properties for SAR assessment of mobile telephones," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 2, 408-413, 2006.
doi:10.1109/TEMC.2006.874085

25. Schulz, R. B., V. C. Plantz, and D. R. Brush, "Shielding theory and practice," IEEE Transactions on Electromagnetic Compatibility, Vol. 30, No. 30, 187-201, 1998.

26. Jayasree, P. V. Y., V. S. S. N. S. Baba, B. P. Rao, and P. Lakshman, "Analysis of shielding effectiveness of single, double and laminated shields for oblique incidence of EM waves," Progress In Electromagnetics Research B, Vol. 22, 187-202, 2010.
doi:10.2528/PIERB10051305

27. Dutta, P. K., P. V. Y. Jayasree, and V. S. S. N. S. Baba, "SAR reduction in the modelled human head for the mobile phone using different material shields," Human-centric Computing and Information Sciences, Vol. 6, No. 1, 1-22, 2016.
doi:10.1186/s13673-016-0059-0

28. Ram, R., D. Khastgir, and M. Rahaman, "Electromagnetic interference shielding effectiveness and skin depth of poly (vinylidene fluoride)/particulate nano-carbon filler composites: Prediction of electrical conductivity and percolation threshold," Polymer International, Vol. 68, No. 6, 1194-1203, 2019.
doi:10.1002/pi.5812

29. Zhu, X., X. Juan, Q. Feng, Z. Yan, A. Guo, and C. Kan, "Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires," Nanoscale, Vol. 12, No. 27, 14589-14597, 2020.
doi:10.1039/D0NR03790G

30. Wang, Y., C. Zhu, R. Pfattne, H. Yan, L. Jin, S. Chen, F. M. Lopez, F. Lissel, J. Liu, N. I. Rabiah, Z. Chen, J. W. Chung, C. Linder, M. F. Toney, B. Murmann, and Z. Bao, "A highly stretchable, transparent, and conductive polymer," Science Advances, Vol. 3, No. 3, e1602076, 2017.
doi:10.1126/sciadv.1602076

31. Paul, C. R., Introduction to Electromagnetic Compatibility, John Wiley & Sons, New Jersey, 2006.

32. Rashid, T. B. and H. H. Song, "Analysis of biological effects of cell phone radiation on human body using specific absorption rate and thermoregulatory response," Microwave and Optical Technology Letters, Vol. 61, No. 6, 1482-1490, 2019.
doi:10.1002/mop.31777

33. Mohammed, B., K. Bialkowski, A. Abbosh, P. C. Mills, and A. P. Bradley, "Closed-form equation to estimate the dielectric properties of biological tissues as a function of age," Bioelectromagnetics, Vol. 38, No. 6, 474-481, 2017.
doi:10.1002/bem.22054