Vol. 106
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-12-18
Validation of Grating Lobe Reductions in a Dual-Mode Scanning Phased Array Antenna
By
Progress In Electromagnetics Research M, Vol. 106, 117-125,
Abstract
The experimental validation of reduced grating lobes in a seven-element, hexagonal, scanning phased array antenna with the one-wavelength element spacing is presented. The base element of the array is a single-layer, dual-mode antenna with self-scanning and nulling properties. For the selected scan angle of -30°, the required microstrip transmission line based feeding network, consisting of ring hybrids, power splitters, and branchline couplers, are designed and developed. A prototype of the complete array and feeding network was fabricated and successfully tested to show the effectiveness of the grating lobe reduction method using the dual-mode antenna elements in scanning phased array antennas with the one-wavelength element spacing.
Citation
Zabed Iqbal Tanzeela Mitha Maria Pour , "Validation of Grating Lobe Reductions in a Dual-Mode Scanning Phased Array Antenna," Progress In Electromagnetics Research M, Vol. 106, 117-125, .
doi:10.2528/PIERM21092909
http://www.jpier.org/PIERM/pier.php?paper=21092909
References

1. Fourikis, N., Phased Array-Based Systems and Applications, John Wiley & Sons, New York, 1997.

2. Mailloux, R. J., Phased Array Antenna Handbook, 2nd Ed., Artech House, Norwood, MA, USA, 2005.

3. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., Wiley, Hoboken, 620 NJ, USA, 2016.

4. Helander, J., D. Tayli, and D. Sjoberg, "Multi-port element for grating lobe suppression in sparse VHF phased array radars," IEEE Trans. Antennas Propag., Vol. 67, No. 10, 6667-6671, Oct. 2019.
doi:10.1109/TAP.2019.2925967

5. Tu, X., G. Zhu, X. Hu, and X. Huang, "Grating lobe suppression in sparse array-based ultra-wideband through-wall imaging radar," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1020-1023, Oct. 2016.

6. Lu, B., S. X. Gong, S. Zhang, Y. Guan, and J. Ling, "Optimum spatial arrangement of array elements for suppression of grating-lobes of radar cross section," IEEE Antennas Wireless Propag. Lett., Vol. 9, 114-117, Feb. 2010.
doi:10.1109/LAWP.2010.2044230

7. Bianchi, D., S. Genovesi, and A. Monorchio, "Randomly overlapped subarrays for reduced sidelobes in angle-limited scan arrays," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1969-1972, Apr. 2017.
doi:10.1109/LAWP.2017.2690824

8. Krivosheev, Y. V., A. V. Shishlov, and V. V. Denisenko, "Grating lobe suppression in aperiodic phased array antennas composed of periodic subarrays with large element spacing," IEEE Antennas Propag. Magazine, Vol. 57, No. 1, 76-85, Feb. 2015.
doi:10.1109/MAP.2015.2397155

9. Brockett, T. J. and Y. R.-Samii, "Subarray design diagnostics for the suppression of undesirable grating lobes," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1373-1380, Mar. 2012.
doi:10.1109/TAP.2011.2180333

10. Haupt, R. L., "Reducing grating lobes due to subarray amplitude tapering," IEEE Trans. Antennas Propag., Vol. 9, No. 8, 846-850, Aug. 1985.
doi:10.1109/TAP.1985.1143682

11. Bavaro, V., G. Caliano, and M. Pappalardo, "Element shape design of 2-D CMUT arrays for reducing grating lobes," IEEE Trans. Ultrason., Ferroelec., Freq. Contr., Vol. 55, No. 2, 308-318, Feb. 2008.
doi:10.1109/TUFFC.2008.650

12. Hansen, R. C. and G. G. Charlton, "Subarray quantization lobe decollimation," IEEE Trans. Antennas Propag., Vol. 47, No. 8, 1237-1239, Aug. 1999.
doi:10.1109/8.791937

13. Skobelev, S. P. and P.-S. Kildal, "Blindness removal in arrays of rectangular waveguides using dielectrically loaded hard walls," IEEE Trans. Antennas Propag., Vol. 46, No. 4, 546-550, Apr. 1998.
doi:10.1109/8.664119

14. Feng, B.-K. and D. C. Jenn, "Grating lobe suppression for distributed digital subarrays using virtual filling," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1323-1326, Oct. 2013.

15. Iqbal, Z. and M. Pour, "Grating lobe reduction in scanning phased array antennas with large element spacing," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 6965-6974, Dec. 2018.
doi:10.1109/TAP.2018.2874717

16. Iqbal, Z., T. Mitha, and M. Pour, "A self-nulling single-layer dual-mode microstrip patch antenna for grating lobe reduction," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 9, 1506-1510, Sept. 2020.
doi:10.1109/LAWP.2020.3007903

17. Pozar, D. M., Microwave Engineering, Wiley, Hoboken, NJ, 2012.

18. Lim, J.-S. and S.-Y. Eom, "A new 3-way power divider with various output power ratios," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 785-788, San Francisco, CA, USA, Jun. 17-21, 1996.

19., High Frequency Structure Simulator (HFSS 18.0), Canonsburg, PA, USA, ANSYS, 2018.