Vol. 106
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-12-28
Reconfigurable Polarization MIMO Dielectric Resonator Antenna
By
Progress In Electromagnetics Research M, Vol. 106, 227-237, 2021
Abstract
This paper introduces a reconfigurable polarization MIMO (Multi-Input Multi-Output) dielectric resonator antenna at millimeter-wave frequency band. The proposed antenna consists of four single dielectric resonator antennas that are placed in 2×2 configuration to form a MIMO antenna, and also this design is based on using the pin diode switching concept to control the antenna polarization. In order to modify the antenna structure for different polarizations, two pin diodes are used in the ground place of the MIMO antenna. The designed antenna operates at 4.35 GHz for polarization diversity applications of the modern wireless MIMO systems. The proposed antenna covers a bandwidth of 11.26% at the central frequency and provides circular and linear polarizations with high gain around 6.4 dB. The antenna performance in terms of reflection coefficient, gain and axial ratio bandwidth in different modes (ON-ON, ON-OFF, OFF-ON and OFF-OFF) is measured. The advantages of the designed antenna are simple structure (using two pin diode switches to modify antenna polarization), high gain, low profile, and light weight. According to the measurement and simulation results, the designed antenna displays good return loss and radiation performance. Using the plexiglass as an antenna material which is very cheap and available in different dimensions is another advantage of the proposed antenna which reduce the fabrication cost.
Citation
Masoumeh Rezvani, Saeid Nikmehr, and Ali Pourziad, "Reconfigurable Polarization MIMO Dielectric Resonator Antenna," Progress In Electromagnetics Research M, Vol. 106, 227-237, 2021.
doi:10.2528/PIERM21100302
References

1. Zhong, L., "A polarization reconfigurable cylindrical dielectric resonator antenna," Progress In Electromagnetics Research M, Vol. 93, 1-9, 2020.
doi:10.2528/PIERM20040804

2. Ge, L. and K. M. Luk, "Frequency-reconfigurable low profile circular monopolar patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 7, 3443-3449, 2014.
doi:10.1109/TAP.2014.2318077

3. Esmaeili, M. and J.-J. Laurin, "Polarization reconfigurable slot-fed cylindrical dielectric resonator antenna," Progress In Electromagnetics Research, Vol. 168, 61-71, 2020.
doi:10.2528/PIER20041203

4. Liu, Y., M. Wei, H. Liu, and S.-X. Gong, "A novel compact three-port dielectric resonator antenna with reconfigurable pattern for WLAN systems," Progress In Electromagnetics Research C, Vol. 47, 37-45, 2014.
doi:10.2528/PIERC13121103

5. Lin, W., S. L. Chen, R. W. Ziolkowski, and Y. J. Guo, "Reconfigurable, wideband, low-profile, circularly polarized antenna and array enabled by an artificial magnetic conductor ground," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1564-1569, 2018.
doi:10.1109/TAP.2018.2790437

6. Kumar, P., et al. "Dual-band dual-sense polarization reconfigurable circularly polarized antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 64-68, 2018.
doi:10.1109/LAWP.2018.2880799

7. Sung, Y., "Investigation into the polarization of asymmetrical-feed triangular microstrip antennas and its application to reconfigurable antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1039-1046, 2009.
doi:10.1109/TAP.2009.2036277

8. Ding, Z., S.-Q. Xiao, Y. Bai, and B.-Z. Wang, "Hemisphere dielectric resonator pattern reconfigurable antenna and its linear phased array," Progress In Electromagnetics Research Letters, Vol. 6, 183-192, 2009.
doi:10.2528/PIERL09011309

9. Abou Shahine, M. Y., M. Al-Husseini, M. Mervat, and A. El-Hajj, "Dielectric resonator antennas with band rejection and frequency reconfigurability," Progress In Electromagnetics Research C, Vol. 46, 101-108, 2014.
doi:10.2528/PIERC13112101

10. Al-Yasir, Y. I., A. S. Abdullah, N. Ojaroudi Parchin, R. A. Abd-Alhameed, and J. M. Noras, "A new polarization-reconfigurable antenna for 5G applications," Electronics, Vol. 7, No. 11, 293, 2018.
doi:10.3390/electronics7110293

11. Saraswat, R. K., M. Kumar, S. Gurjar, and C. P. Singh, "A reconfigurable polarized antenna using switchable slotted ground structure," 2015 Fifth International Conference on Communication Systems and Network Technologies, 15-19, 2015.
doi:10.1109/CSNT.2015.12

12. Mahlaoui, Z., E. Antonino-Daviu, A. Latif, and M. Ferrando-Bataller, "Design of a dual-band frequency recon gurable patch antenna based on characteristic modes," International Journal of Antennas and Propagation, 2019.

13. Zhang, L., S. Gao, Q. Luo, P. R. Young, and Q. Li, "Wideband loop antenna with electronically switchable circular polarization," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 242-245, 2016.

14. SMP1345 Series: Very Low Capacitance, Plastic Packaged Silicon PIN Diodes, Skyworks Solutions, Inc.

15. Plourde, J. K. and C. L. Ren, "Application of dielectric resonators in microwave components," IEEE Transactions on Microwave Theory and Techniques, Vol. 8, 754-770, August 1981.
doi:10.1109/TMTT.1981.1130444

16. Plourde, J. K. and C. L. Ren, "Application of dielectric resonators in microwave components," IEEE Transactions on Microwave Theory and Techniques, Vol. 8, 754-770, August 1981.
doi:10.1109/TMTT.1981.1130444

16. Chauhan, M., A. K. Pandey, and B. Mukherjee, "A novel compact cylindrical dielectric resonator antenna for wireless sensor network application," EEE Sensors Letters, Vol. 2, No. 2, 1-4, 2018.
doi:10.1109/LSENS.2018.2825369

17. Farzami, F., S. Khaledian, B. Smida, and D. Erricolo, "Reconfigurable linear/circular polarization rectangular waveguide filtenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 9-15, 2017.
doi:10.1109/TAP.2017.2767634

18. Le, T. T., H. Y. Park, and T. Y. Yun, "Simple reconfigurable circularly polarized antenna at three bands," Sensors, Vol. 19, No. 10, 2316, 2019.
doi:10.3390/s19102316

19. Sinah, A. and C. E. Saavedra, "Four-element polarization-reconfigurable MIMO antenna using fluidics," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 1849-1850, July 2020.

20. Elgiddawy, S., H. A. Malhat, S. H. Zainud-Deen, A. A. Ibrahim, and H. Hamed, "Compact reconfigurable polarization plasma square microstrip patch MIMO antenna for 5G wireless applications," IEEE in 2021 38th National Radio Science Conference (NRSC), Vol. 1, 88-95, July 2021.

21. Panahi, A., X. L. Bao, K. Yang, O. O'Conchubhair, and M. J. Ammann, "A simple polarization reconfigurable printed monopole antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5129-5134, 2015.
doi:10.1109/TAP.2015.2474745

22. Liao, Y. J. and H. L. Lin, "Polarization reconfigurable eccentric annular ring slot antenna design," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4152-4155, 2015.
doi:10.1109/TAP.2015.2443173

23. McMichael, I. T., "A mechanically reconfigurable patch antenna with polarization diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1186-1189, 2018.
doi:10.1109/LAWP.2018.2837902

24. Begum, H., X. Wang, and M. Lu, "A polarization-reconfigurable microstrip antenna design based on parasitic pin loading," IEEE Radio and Wireless Symposium (RWS), 135-137, January 2017.