Vol. 106

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-12-24

Compensation Rotor Vibration of Outer Rotor Coreless Bearingless Permanent Magnet Synchronous Generator Using Variable Step Least Mean Square Adaptive Filter

By Huangqiu Zhu, Kai Zhou, and Junqi Huan
Progress In Electromagnetics Research M, Vol. 106, 191-203, 2021
doi:10.2528/PIERM21100504

Abstract

An outer rotor coreless bearingless permanent magnet synchronous generator (ORC-BPMSG) has the characteristics of long service life, high efficiency, low noise, etc. However, the stability and reliability of the system and the output voltage are affected by the rotor vibration. In this paper, the step size and error of improved variable step least mean square (VSLMS) adaptive filter using improved simplified particle swarm optimization (ISPSO) is proposed, which suppresses the vibration of the rotor. The mathematical model and working principle of the ORC-BPMSG are introduced. The performances of improved VSLMS adaptive filter parameters are optimized by the improved SPSO algorithm, which generates a compensation signal to realize vibration compensation. The simulation system for the vibration compensation of the ORC-BPMSG is constructed, and dynamic suspension experiment and variable speed experiment of the rotor are carried out, which verify the robustness and stability of the proposed method.

Citation


Huangqiu Zhu, Kai Zhou, and Junqi Huan, "Compensation Rotor Vibration of Outer Rotor Coreless Bearingless Permanent Magnet Synchronous Generator Using Variable Step Least Mean Square Adaptive Filter," Progress In Electromagnetics Research M, Vol. 106, 191-203, 2021.
doi:10.2528/PIERM21100504
http://www.jpier.org/PIERM/pier.php?paper=21100504

References


    1. He, C. and T. Wu, "Analysis and design of surface permanent magnet synchronous motor and generator," CES Trans. Electric. Mach. Syst., Vol. 3, No. 1, 94-100, Mar. 2019.
    doi:10.30941/CESTEMS.2019.00013

    2. Jin, F., J. Si, Z. Cheng, P. Su, L. Dong, and G. Qi, "Optimization design of a novel toroidal-winding permanent magnet synchronous generator," 22nd Int. Conf. Electric. Mach. Syst. (ICEMS), 1-5, Harbin, China, 2019.

    3. Yang, X., D. Patterson, and J. Hudgins, "Permanent magnet generator design and control for large wind turbines," 2012 IEEE Power Electric. Mach. Wind Appl., 1-5, Denver, USA, 2012.

    4. He, C. and T. Wu, "Analysis and design of surface permanent magnet synchronous motor and generator," CES Trans. Electric. Mach. Syst., Vol. 3, No. 1, 94-100, Mar. 2019.
    doi:10.30941/CESTEMS.2019.00013

    5. Asama, J., A. Mouri, T. Oiwa, and A. Chiba, "Suspension force investigation for consequent-pole and surface-mounted permanent magnet bearingless motors with concentrated winding," 2015 IEEE Int. Electric Mach. Driv. Conf. (IEMDC), 780-785, Coeurd'Alene, ID, USA, 2015.

    6. Li, H. and H. Zhu, "Design of bearingless flux-switching permanent magnet motor," IEEE Trans. Appl. Supercond., Vol. 26, No. 4, 1-5, Art no. 5202005, Jun. 2016.

    7. Diao, X., H. Zhu, Y. Qin, and Y. Hua, "Torque ripple minimization for bearingless synchronous reluctance motor," IEEE Trans. Appl. Supercond., Vol. 28, No. 3, 1-5, Art no. 5205505, Apr. 2018.
    doi:10.1109/TASC.2018.2798632

    8. Zhu, H. and Y. Xu, "Permanent magnet parameter design and performance analysis of bearingless flux switching permanent magnet motor," IEEE Trans. Ind. Electron., Vol. 68, No. 5, 4153-4163, May 2021.
    doi:10.1109/TIE.2020.2984434

    9. Tan, C., H. Wang, and Y. Wang, "Rotor eccentricity compensation of bearingless switched reluctance motors based on extended kalman filter," 2019 12th Int. Symp. Comput. Intell. Des. (ISCID), 111-115, Hangzhou, China, 2019.

    10. Ye, X. and Z. Yang, "Development of bearingless induction motors and key technologies," IEEE Access, Vol. 7, 121055-121066, 2019.
    doi:10.1109/ACCESS.2019.2937118

    11. Zhu, H. and Y. Hu, "Research on operation principle and control of novel hybrid excitation bearingless permanent magnet generator," Energies, Vol. 9, No. 9, 673-689, Sep. 2016.
    doi:10.3390/en9090673

    12. Zhao, H. and C. Zhu, "Feedforward decoupling control for rigid rotor system of active magnetically suspended high-speed motors," IET Electr. Power Appl., Vol. 13, No. 9, 1298-1309, Sep. 2019.
    doi:10.1049/iet-epa.2018.5824

    13. Chuan, M. and Z. Changsheng, "Unbalance compensation for active magnetic bearing rotor system using a variable step size real-time iterative seeking algorithm," IEEE Trans. Ind. Electron., Vol. 65, No. 5, 4177-4186, May 2018.
    doi:10.1109/TIE.2017.2772144

    14. Chen, Q., G. Liu, and B. Han, "Suppression of imbalance vibration in AMB-rotor systems using adaptive frequency estimator," IEEE Trans. Ind. Electron., Vol. 62, No. 12, 7696-7705, Dec. 2015.
    doi:10.1109/TIE.2015.2455022

    15. Zhu, H., Z. Yang, X. Sun, D. Wang, and X. Chen, "Rotor vibration control of a bearingless induction motor based on unbalanced force feed-forward compensation and current compensation," IEEE Access, Vol. 8, 12988-12998, 2020.
    doi:10.1109/ACCESS.2020.2964106

    16. Zhao, C., H. Zhu, Y. Du, J. Ju, and Y. Qin, "A novel bearingless flux-switching permanent magnet motor," 2016 IEEE Veh. Power Propuls. Conf. (VPPC), 1-5, Hangzhou, China, 2016.