Vol. 106

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-12-27

Spatially Squeezed Electromagnetic Modes of a Transformational Optics Based Cavity Resonator for Targeted Material Heating

By Barakathulla Asrafali, Chakravarthy Venkateswaran, and Natesan Yogesh
Progress In Electromagnetics Research M, Vol. 106, 205-214, 2021
doi:10.2528/PIERM21101804

Abstract

Confining electromagnetic (e-m) modes in a tiny space is a desirable aspect for many applications including targeted material heating and light harvesting techniques. In this work, we report spatially squeezed e-m modes of a cavity resonator formed by the modified transformation optical (TO) medium. The proposed coordinate transformation scheme suggests curved contours of refractive index profile such that the e-m mode can be confined within the contours. The effective mode area for a TO cavity is at least 10 times smaller than the air-filled metallic cavity. The confined e-m modes of a proposed cavity are horizontally flattened but vertically squeezed of the dimension of λ/49. The material parameters of the proposed TO medium are approximated with non-magnetic and isotropic dielectric values. For an application aspect, squeezed mode of the TO cavity is used for targeted material heating, and it is demonstrated based on e-m thermal co-simulations. A tiny dielectric material placed at the squeezed part of the cavity mode is heated rapidly with the temperature rise of 2.350˚C/s (110˚C/s) for the single (dual) e-m source excitation with the peak electric field strength of 5 x 104 V/m. We further discuss how one can realize the proposed TO medium practically with a cell-grid approximation using photonic crystals and metamaterials.

Citation


Barakathulla Asrafali, Chakravarthy Venkateswaran, and Natesan Yogesh, "Spatially Squeezed Electromagnetic Modes of a Transformational Optics Based Cavity Resonator for Targeted Material Heating," Progress In Electromagnetics Research M, Vol. 106, 205-214, 2021.
doi:10.2528/PIERM21101804
http://www.jpier.org/PIERM/pier.php?paper=21101804

References


    1. Vučković, J., "Quantum optics and cavity QED with quantum dots in photonic crystals,", Note 2013, Stanford University, 2013.
    doi:10.1103/PhysRevA.75.063830

    2. Ramakrishna, S. A., S. Guenneau, S. Enoch, G. Tayeb, and B. Gralak, "Confining light with negative refraction in checkerboard metamaterials and photonic crystals," Phys. Rev. A, Vol. 75, 063830, 2007.
    doi:10.1063/5.0027465

    3. Yi, J., Z. Shi, D. Li, C. Liu, H. Sun, L. Zhu, X. Chen, and S. N. Burokur, "A metamaterial lens based on transformation optics for horizontal radiation of OAM vortex waves," J. Appl. Phys., Vol. 129, 2021.
    doi:10.1038/nmat1994

    4. Tanaka, Y., J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nature Mater., Vol. 6, 862-865, 2007.
    doi:10.2528/PIER00122803

    5. Kishk, A. A., A. W. Glisson, G. P. Junker, W. M. Ave, and E. Segundo, "Bandwidth enhancement for split cylindrical dielectric resonator antennas," Progress In Electromagnetics Research, Vol. 33, 97-118, 2001.
    doi:10.1080/09500349608232782

    6. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell's equations," J. Mod. Opt., 773-793, 1996.
    doi:10.1364/JOSAB.27.001603

    7. Teixeira, F. L., H. Odabasi, and K. F. Warnick, "Anisotropic metamaterial blueprints for cladding control of waveguide modes," J. Opt. Soc. Am. B, Vol. 27, 1603, 2010.

    8. McCall, M., J. B. Pendry, V. Galdi, Y. Lai, S. A. R. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, V. Ginis, E. Martini, G. Minatti, S. Maci, M. Ebrahimpouri, Y. Hao, P. Kinsler, J. Gratus, J. M. Lukens, A. M. Weiner, U. Leonhardt, I. I. Smolyaninov, V. N. Smolyaninova, R. T. Thompson, M. Wegener, M. Kadic, and S. A. Cummer, "Roadmap on transformation optics," J. Opt., Vol. 20, No. 6, United Kingdom, 2018.
    doi:10.1016/S0079-6638(08)00202-3

    9. Leonhardt, U. and T. G. Philbin, "Chapter 2 Transformation optics and the geometry of light," Prog. Opt., Vol. 53, 69-152, 2009.
    doi:10.1017/S0305004100012664

    10. Van Dantzig, D., "The fundamental equations of electromagnetism, independent of metrical geometry," Math. Proc. Cambridge Philos. Soc., Vol. 30, 421-427, 1934.
    doi:10.1163/156939399X01104

    11. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," Journal of Electromagnetic Waves and Applications, Vol. 13, 665-686, 1999.
    doi:10.1109/PROC.1981.12048

    12. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, 676-696, 1981.
    doi:10.1016/j.photonics.2007.07.013

    13. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics Nanostructures - Fundam. Appl., Vol. 6, 87-95, 2008.
    doi:10.1126/science.1125907

    14. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
    doi:10.3390/en3071335

    15. Yang, J., M. Huang, C. Yang, J. Peng, and R. Zong, "Metamaterial electromagnetic superabsorber with arbitrary geometries," Energies, Vol. 3, No. 7, 1335-1343, 2010.
    doi:10.1063/1.5045489

    16. Vasantharajan, G., N. Yogesh, and V. Subramanian, "Beam steering based on coordinate transformation of Fermat spiral configurations," AIP Adv., Vol. 9, 075217, 2019.
    doi:10.1103/PhysRevLett.105.266807

    17. Fernandez-Domnguez, A. I., S. A. Maier, and J. B. Pendry, "Collection and concentration of light by touching spheres: A transformation optics approach," Phys. Rev. Lett., Vol. 105, 266807, 2010.
    doi:10.1103/PhysRevB.77.035122

    18. Tsang, M. and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B, Vol. 77, 035122, 2008.
    doi:10.2528/PIER15112505

    19. Dehdashti, S., H. Wang, Y. Jiang, Z. Xu, and H. Chen, "Review of black hole realization in laboratory base on transformation optics," Progress In Electromagnetics Research, Vol. 154, 181-193, 2015.
    doi:10.1103/PhysRevA.90.043812

    20. Kadic, M., G. Dupont, S. Enoch, and S. Guenneau, "Invisible waveguides on metal plates for plasmonic analogs of electromagnetic wormholes," Phys. Rev. A, Vol. 90, 043812, 2014.
    doi:10.1103/PhysRevLett.100.063903

    21. Rahm, M., S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett., Vol. 100, 063903, 2008.
    doi:10.1016/j.ijleo.2010.10.023

    22. Zhou, J., M. Li, L. Xie, and D. Liu, "Design of a new kind of polarization splitter based on transformation optics," Optik, Vol. 122, 1672-1675, 2011.
    doi:10.1063/1.5020204

    23. Haddad, H., R. Loison, R. Gillard, A. Harmouch, and A. Jrad, "A combination of transformation optics and surface impedance modulation to design compact retrodirective reflectors," AIP Adv., Vol. 8, 025114, 2018.
    doi:10.1364/OE.417678

    24. Pakniyat, S., S. Jam, A. Yahaghi, and G. W. Hanson, "Reflectionless plasmonic right-angled waveguide bend and divider using graphene and transformation optics," Optics Express, Vol. 29, No. 6, 9589-9598, 2021.

    25. Xu, L. and H. Chen, "Conformal transformation optics," Nat. Photonics, Vol. 9, 15-23, 2014.
    doi:10.1364/OE.18.006089

    26. Chang, Z., X. Zhou, J. Hu, and G. Hu, "Design method for quasi-isotropic transformation materials based on inverse Laplace's equation with sliding boundaries," Optics Express, Vol. 18, No. 6, 6089, 2010.

    27. Whiteman, J. R., The Mathematics of Finite Elements and Applications, John Wiley and Sons, Chichester, 1998, http://www.comsol.com.
    doi:10.1016/j.photonics.2015.04.003

    28. Yogesh, N., Q. Yu, and Z. Ouyang, "Single- and multi-beam confinement of electromagnetic waves in a photonic crystal open cavity providing rapid heating and high temperatures," Photonics Nanostructures - Fundam. Appl., Vol. 15, 89-98, 2015.
    doi:10.1364/OE.22.002725

    29. Cao, Y., J. Xie, Y. Liu, and Z. Liu, "Modeling and optimization of photonic crystal devices based on transformation optics method," Optics Express, Vol. 22, 2725-2734, 2014.
    doi:10.1063/1.4794940

    30. Yan, S. and G. A. E. Vandenbosch, "Compact circular polarizer based on chiral twisted double split-ring resonator," Appl. Phys. Lett., Vol. 102, 103503, 2013.
    doi:10.2528/PIER12050206

    31. Yogesh, N. and V. Subramanian, "Spatial beam compression and effective beam injection using triangular gradient index profile photonic crystals," Progress In Electromagnetics Research, Vol. 129, 51-67, 2012.
    doi:10.1002/adma.201605198

    32. Zhou, N., C. Liu, J. A. Lewis, and D. Ham, "Gigahertz electromagnetic structures via direct ink writing for radio-frequency oscillator and transmitter applications," Adv. Mater., Vol. 29, No. 15, 1605198, 2017.
    doi:10.1002/adma.201800940

    33. Velasco-Hogan, A., J. Xu, and M. A. Meyers, "Additive manufacturing as a method to design and optimize bioinspired structures," Adv. Mater., Vol. 30, No. 52, 1800940, 2018.

    34. Poyanco, J. M., F. Pizarro, and E. Rajo-Iglesias, "Wideband hyperbolic flat lens in the Ka-band based on 3D-printing and transformation optics," Appl. Phys. Lett., Vol. 118, 2021.