Vol. 107
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-01-25
Investigation of on-Body Antenna Performance Using Motion Capture Technique and Statistical Analysis
By
Progress In Electromagnetics Research M, Vol. 107, 205-216, 2022
Abstract
The field of wireless body area networks (WBAN) has seen growing interest in recent years due to applications of wearable devices, such as in healthcare. Effective on-body antenna design is necessary to provide optimal performance in real-world scenarios. This study compares several wearable antenna types, which are the monopole, patch, and e-textile antennas, to determine how human body motion affects antenna performance using a human body phantom model and human volunteers. The monopole antenna overall outperforms the patch antenna at 915 MHz and the e-textile antenna at 2.45 GHz and a Weibull distribution can be used as a probability distribution for S21 during an arm swing motion for all antenna types tested.
Citation
George Lee Daniel Ugochukwu Agu Brian Garner Yang Li , "Investigation of on-Body Antenna Performance Using Motion Capture Technique and Statistical Analysis," Progress In Electromagnetics Research M, Vol. 107, 205-216, 2022.
doi:10.2528/PIERM21120208
http://www.jpier.org/PIERM/pier.php?paper=21120208
References

1. Kamarudin, M. R., Y. I. Nechayev, and P. S. Hall, "Performance of antennas in the on-body environment," 2005 IEEE Antennas and Propagation Society International Symposium, July 2005.

2. Alomainy, A., Y. Hao, C. G. Parini, and P. S. Hall, "Comparison between two different antennas for UWB on-body propagation measurements," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 31-34, 2005.
doi:10.1109/LAWP.2005.844143

3. Ghannoum, H., C. Roblin, and S. Bories, "UWB antennas in body area networks," IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials, March 2006.

4. Hao, Y., A. Alomainy, Y. Zhao, C. G. Parini, Y. Nechayev, P. Hall, and C. C. Constantinou, "Statistical and deterministic modelling of radio propagation channels in WBAN at 2.45 GHz," 2006 IEEE Antennas and Propagation Society International Symposium, July 2006.

5. Alomainy, A., Y. Hao, A. Owadally, C. G. Parini, Y. Nechayev, C. C. Constantinou, and P. S. Hall, "Statistical analysis and performance evaluation for on-body radio propagation with microstrip patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, 245-248, January 2007.
doi:10.1109/TAP.2006.888462

6. Alomainy, A., A. Sani, A. Rahman, J. G. Santas, and Y. Hao, "Transient characteristics of wearable antennas and radio propagation channels for ultrawideband body-centric wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 875-884, April 2009.
doi:10.1109/TAP.2009.2014588

7. Koohestani, M., A. A. Moreira, and A. K. Skrivervik, "System fidelity factor evaluation of wearable ultra-wideband antennas for on-body communications," IET Microwaves, Antennas, and Propagation, Vol. 9, No. 10, 1054-1058, July 2015.
doi:10.1049/iet-map.2014.0275

8. Touvinen, T., K. Y. Yazdandoost, and J. Iinatti, "Comparison of the performance of the two different UWB antennas for the use in WBAN on-body communications," 2012 6th European Conference on Antennas and Propagation (EUCAP), March 2012.

9. Hall, P. and Y. Hao, Antennas and Propagation for Body-Centric Wireless Communications, 2nd Ed., Ch. 3, 63-106, Artech House, Norwood, MA, USA, 2012.

10. Conway, G. and W. Scanlon, "Antennas for over-body-surface communication at 2.45 GHz," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 855-884, April 2009.

11. Touvinen, T., K. Y. Yazdandoost, and J. Iinatti, "Comparison of the performance of the two different UWB antennas for the use in WBAN on-body communications," 2012 6th European Conference on Antennas and Propagation (EUCAP), March 2012.

12. Trajkovkj, J., J. Zürcher, and A. Skrivervik, "Performance of UHF W-BAN antennas in a real environment scenario," 2014 Loughborough Antennas and Propagation Conference (LAPC), November 2014.

13. Paraskevopoulos, A., A. Alexandridis, T. Zervos, A. Michalopoulou, F. Lazarakis, and J. C. Vardaxoglou, "Modelling of dynamic on-body channels using different types of wearable antennas," The 8th European Conference on Antennas and Propagation (EuCAP 2014), 852-856, The Hague, 2014.
doi:10.1109/EuCAP.2014.6901896

14. Lee, G., B. Garner, and Y. Li, "Investigation of on-body wave propagations using an arm-swinging phantom model and motion capture technique," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 2, 1219-1223, February 2021.
doi:10.1109/TAP.2020.3005049

15. Advanced MRI, National Institutes of Health, Dielectric Phantom Recipe Generator, Accessed: December 14, 2018, [Online], Available: https://amri.ninds.nih.gov/cgi-bin/phantomrecipe.

16. Federal Communications Commission, Body Tissue Dielectric Parameters, Accessed: December 14, 2018, [Online], Available: https://www.fcc.gov/general/body-tissue-dielectric-parameters.

17. Nie, Z., J. Ma, Z. Li, H. Chen, and L. Wang, "Dynamic propagation channel characterization and modeling for human body communication," Sensors, Vol. 12, 17569-17587, 2012.
doi:10.3390/s121217569

18. Cotton, S. L., S. K. Yoo, and W. G. Scanlon, "A measurements based comparison of new and classical models used to characterize fading in body area networks," 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014), December 2014.

19. Rosini, R., R. Verdone, and R. D'Errico, "Body-to-body indoor channel modeling at 2.45 GHz," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, November 2014.

20. Bhargav, N., S. L. Cotton, G. A. Conway, A. McKernan, and W. G. Scanlon, "Simultaneous channel measurements of the on-body and body-to-body channels," 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), September 2016.