Vol. 107
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-01-11
Proximity Fed Triple Band David Fractal 2×1 Microstrip Patch Antenna with DGS
By
Progress In Electromagnetics Research M, Vol. 107, 91-103, 2022
Abstract
This paper presents a triple band proximity fed 2x1 array antenna with defected ground plane. The proposed antenna configuration is composed of two radiating elements, and both radiating elements are made of a pattern similar to the first iteration level David fractal geometry. The proposed David fractal 2x1 array antenna is designed and simulated on an FR-4 substrate of thickness 1.6 mm and dielectric constant 4.3 by using the CST Microwave Studio simulation tool. In order to improve the radiation characteristics of the antenna an H-shaped defect is etched in the ground plane. The antenna is fabricated and tested. The experimental data show good agreements with simulation results. The fabricated triple band fractal 2x1 array antenna resonates at 2.527 GHz, 3.329 GHz and 3.742 GHz having bandwidths of 303 MHz, 99 MHz, and 102 MHz, respectively. The proposed fractal array antenna can be used in mobile applications such as Wi-Fi, WLAN, Bluetooth and Wi-Max.
Citation
Jacob Abraham , "Proximity Fed Triple Band David Fractal 2×1 Microstrip Patch Antenna with DGS," Progress In Electromagnetics Research M, Vol. 107, 91-103, 2022.
doi:10.2528/PIERM21121301
http://www.jpier.org/PIERM/pier.php?paper=21121301
References

1. Balanis, C. A., Antena Theory, Analysis and Design, 3rd Ed., Wiley, New York, 2005.

2. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Book, Artech House, Boston, 2000.

3. Gong, X., L. Tong, Y. Tian, and B. Gao, "Design of a microstrip-fed hexagonal shape UWB antenna with triple notched bands," Progress In Electromagnetics Research C, Vol. 62, 77-87, 2016.
doi:10.2528/PIERC15101701

4. Hu, Y., Y. J. Zhang, and J. Fan, "Equivalent circuit model of coaxial probes for patch antennas," Progress In Electromagnetics Research B, Vol. 38, 281-296, 2012.
doi:10.2528/PIERB11121210

5. Lee, R. Q., K. F. Lee, and J. Bobinchak, "Characteristics of a two-layer electromagnetically coupled rectangular patch antennas," Electronic Letters, Vol. 23, No. 20, 1070-1072, Sep. 1987.
doi:10.1049/el:19870748

6. Mandal, T. and S. Das, "Design of a CPW fed simple hexagonal shape UWB antenna with WLAN and WiMAX band rejection characteristics," Journal of Computational Electronics, Vol. 14, No. 1, 300-308, Mar. 2015.
doi:10.1007/s10825-014-0656-y

7. Kushwaha, N. and R. Kumar, "Design of slotted ground hexagonal microstrip patch antenna and gain improvement with FSS screen," Progress In Electromagnetics Research B, Vol. 51, 177-199, 2013.
doi:10.2528/PIERB13031604

8. Carver, K. and J. Mink, "Microstrip antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 1, 2-24, Jan. 1981.
doi:10.1109/TAP.1981.1142523

9. Kshitija, T., S. Ramakrishna, S. B. Shirol, and P. Kumar, "Micro-strip patch antenna using various types of feeding techniques: An implementation," International Conference on Intelligent Sustainable Systems (ICISS), 318-322, Tamil Nadu, India, Nov. 2019.

10. Sahoo, A. B., N. Patnaik, A. Ravi, S. Behera, and B. B. Mangaraj, "Design of a miniaturized circular microstrip patch antenna for 5G applications," International Conference on Emerging Trends in Information Technology and Engineering (IC-ETITE), 1-4, Vellore, India, May 2020.

11. Bakariya, P. S., S. Dwari, M. Sarkar, and M. K. Mandal, "Proximity-coupled multiband microstrip antenna for wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 646-649, Sep. 2015.
doi:10.1109/LAWP.2014.2376693

12. Casula, G. A., P. Maxia, G. Montisci, G. Valente, G. Mazzarella, and T. Pisanu, "A multiband proximity-coupled-fed flexible microstrip antenna for wireless systems," International Journal of Antennas and Propagation, Vol. 7, 1-7, Sep. 2016.
doi:10.1155/2016/8536058

13. Hossain, M. B. and S. Datto, "Improvement of antenna performance using stacked microstrip patch antenna," International Conference on Electrical, Computer and Telecommunication Engineering (ICECTE), 1-4, Rajshahi, Bangladesh, Feb. 2016.

14. Arya, A. K., A. Patnaik, and M. Kartikeyan, "Microstrip patch antenna with skew-F shaped DGS for dual band operation," Progress In Electromagnetics Research M, Vol. 19, 147-160, 2011.
doi:10.2528/PIERM11052305

15. Evangelista, T. D. S., A. G. Neto, and A. J. R. Serres, "Improved microstrip antenna with FSS superstrate for 5G NR applications," 15th European Conference on Antennas and Propagation (EuCAP), 1-5, Mar. 2021.

16. Nashaat, D., A. H. Elsadek, E. A. Abdallah, M. F. Iskander, and H. M. El Hennawy, "Ultrawide bandwidth 2×2 microstrip patch array antenna using electromagnetic band-gap structure (EBG)," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, May 2011.
doi:10.1109/TAP.2011.2123052

17. Saini, J. and M. K. Garg, "PBG structured compact antenna with switching capability in lower and upper bands of 5G," Progress In Electromagnetics Research M, Vol. 94, 19-29, 2020.
doi:10.2528/PIERM20022202

18. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

19. Mok, W. C., S. H. Wong, K. M. Luk, and K. F. Lee, "Single-layer single-patch dual-band and triple-band patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4341-4344, Aug. 2013.
doi:10.1109/TAP.2013.2260516

20. Li, P., K. M. Luk, and K. L. Lau, "A dual-feed dual-band L-probe patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 7, 2321-2323, Jul. 2005.
doi:10.1109/TAP.2005.850761

21. Joshi, M. P. and V. J. Gond, "Design and analysis of microstrip patch antenna for WLAN and vehicular communication," Progress In Electromagnetics Research C, Vol. 97, 163-176, 2019.
doi:10.2528/PIERC19090201

22. Mayuri, P., N. D. Rani, N. B. Subrahmanyam, and B. T. Madhav, "Design and analysis of a compact reconfigurable dual band notched UWB antenna," Progress In Electromagnetics Research C, Vol. 98, 141-153, 2020.
doi:10.2528/PIERC19082903

23. Abdelaziz, A., "Bandwidth enhancement of microstrip antenna," Progress In Electromagnetic Research, Vol. 63, 311-317, 2006.
doi:10.2528/PIER06053001

24. Hossein, M. and J. Shahrokh, "Enhanced bandwidth of shorted patch antennas using folded-patch techniques," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 198-201, 2013.

25. Cao, W.-Q. and W. Hong, "Bandwidth and gain enhancement for probe-fed CP microstrip antenna by loading with parasitical patches," Progress In Electromagnetics Research Letters, Vol. 61, 47-53, 2016.
doi:10.2528/PIERL16031305

26. Chen, Z., Y.-L. Ban, J.-H. Chen, J. L.-W. Li, and Y.-J. Wu, "Bandwidth enhancement of LTE/WWAN printed mobile phone antenna using slotted ground structure," Progress In Electromagnetics Research, Vol. 129, 469-483, 2012.
doi:10.2528/PIER12061203

27. Mitra, D., D. Das, and S. R. B. Chaudhuri, "Bandwidth enhancement of microstrip line and CPW-fed asymmetrical slot antennas," Progress In Electromagnetics Research Letters, Vol. 32, 69-79, 2012.
doi:10.2528/PIERL12032204

28. Kim, C. S., J. S. Park, D. Aha, and J. B. Lim, "A novel I-D periodic defected ground structures for planar circuits," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 4, 131-133, Apr. 2000.
doi:10.1109/75.846922

29. Garg, R., I. Bahl, and M. Bozzi, Micostrip Lines and Slot Lines, 3rd Ed., Chapter 6, 287-341, Artech House, 2013.

30. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, Vol. 2017, Article ID 2018527, 22 pages, Feb. 2017.

31. Guha, D., S. Biswas, M. Biswas, J. Y. Siddiqui, and Y. M. M. Antar, "Concentric ring-shaped defected ground structures for microstrip applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 402-405, Sept. 2006.
doi:10.1109/LAWP.2006.880691

32. Wang, P. A., S. Gao, and W. Leng, "Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 298-301, Apr. 2011.

33. Khandelwal, M. K., B. K. Kanaujia, S. Dwari, S. Kumar, and A. K. Gautam, "Triple band circularly polarized compact microstrip antenna with defected ground structure for wireless applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 6, 943-953, Sept. 2016.
doi:10.1017/S1759078715000288

34. Karim, M. N. A., M. K. A. Rahim, H. A. Majid, O. Ayop, M. Abu, and F. Zubir, "Log periodic fractal koch antenna for UHF band applications," Progress In Electromagnetics Research, Vol. 100, 201-218, 2010.
doi:10.2528/PIER09110512

35. Li, D. and J.-F. Mao, "Multiband multimode arched bow-shaped fractal helix antenna," Progress In Electromagnetics Research, Vol. 141, 47-78, 2013.
doi:10.2528/PIER13050903

36. Waqas, M., Z. Ahmed, and M. B. Ihsan, "Multiband Sierpinski fractal antenna," IEEE 13th International Multi-topic Conference, Islamabad, Jul. 1-6, 2009.

37. Jibhkate, N. S. and P. L. Zade, "A compact multiband plus shape CPW fed fractal antenna for wireless application," International Conference on Green Engineering and Technologies, 1-5, Coimbatore, India, 2016.

38. Lopes, M., M. N. Aik, and A. Dessai, "Design and simulation of frequency recon gurable microstrip patch antenna for C band and X band applications," International Conference on Computing, Communication, Control and Automation, 827-831, Pune, India, 2017.

39. Bukkawar, S. and V. Ahmed, "Square shaped fractal antenna for multiband applications," International Conference on Smart City and Emerging Technology, 1-4, Mumbai, 2018.

40. Kushwaha, N. and R. Kumar, "Design of slotted ground hexagonal microstrip patch antenna and gain improvement with FSS screen," Progress In Electromagnetics Research B, Vol. 51, 177-199, 2013.
doi:10.2528/PIERB13031604

41. Desai, A., T. K. Upadhyaya, R. Patel, S. Bhatt, and P. Mankodi, "Wideband high gain fractal antenna for wireless applications," Progress In Electromagnetics Research Letters, Vol. 74, 125-130, 2018.
doi:10.2528/PIERL18011504

42. Armin, B. and H. Shlomo, Fractals in Science, Chapter 1, Springer Verling, Berlin, 1991.

43. Abraham, J., "Investigations on multiband microstrip antennas and arrays for wireless communication applications,", Ph.D. dissertation, Chapter 3, School of Technology and Applied Science, M G University, 2018.