Vol. 108
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-03-02
A Dual-Wideband Polarization-Insensitive Linear Polarization Converter Based on Metasurface
By
Progress In Electromagnetics Research M, Vol. 108, 213-222, 2022
Abstract
A linear-to-linear cross-polarization converter (CPC) based on metasurface (MS) is proposed. The converter is polarization insensitive and has two wide bands. The MS is composed of periodical unit cells printed on a substrate. The top and bottom MS unit cells are formed with four groups of right-angle triangle pairs whose vertices are connected. Thus, there are eight pairs of triangles on the top and bottom surfaces of the substrate, and these pairs of triangles are arranged alternately in overlapping and orthogonal ways. Simulated and measured results indicate that the polarization conversion ratio (PCR) of the CPC is higher than 95% in the bands of 9.4 to 13.1 GHz (32.9%) and 13.4 to 17.2 GHz (24.8%). Additionally, the PCR remains the same when the electromagnetic (EM) wave is incident at arbitrary azimuth. Furthermore, the polarization rotation angle and elliptic angle are calculated to verify the conversion effect. Finally, the conversion mechanism of the proposed converter is explored by analyzing the surface current distribution and magnetic field. The proposed converter can be applied to the field of satellite communication in Ku-band.
Citation
Jinrong Su Yanliang Guo Xinwei Chen Wenmei Zhang , "A Dual-Wideband Polarization-Insensitive Linear Polarization Converter Based on Metasurface," Progress In Electromagnetics Research M, Vol. 108, 213-222, 2022.
doi:10.2528/PIERM22012901
http://www.jpier.org/PIERM/pier.php?paper=22012901
References

1. Zhao, Y. and A. Alu, "Manipulating light polarization with ultrathin plasmonic metasurfaces," Phys. Rev. B: Condens. Matter, Vol. 84, No. 20, 205-428, 2011.

2. Sun, W. J., Q. He, J. M. Hao, and L. Zhou, "A transparent metamaterial to manipulate electromagnetic wave polarization," Optics Letters, Vol. 36, No. 6, 927-929, 2011.
doi:10.1364/OL.36.000927

3. Peng, L., X. F. Li, X. Jiang, and S. M. Li, "A novel THz half-wave polarization converter for cross-polarization conversions of both linear and circular polarizations and polarization conversion ratio regulating," Journal of Lightwave Technology, Vol. 36, No. 19, 4250-4258, 2018.
doi:10.1109/JLT.2018.2836904

4. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

5. Zhu, W. R., X. P. Zhao, and J. Q. Guo, "Multibands of negative refractive indexes in the left-handed metamaterials with multiple dendritic structures," Applied Physics Letters, Vol. 92, No. 24, 241116, 2008.
doi:10.1063/1.2949552

6. Gao, X., X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, "Ultrawideband and high- efficiency linear polarization converter based on double V-shaped metasurface," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3522-3530, 2015.
doi:10.1109/TAP.2015.2434392

7. Chakravarty, S. and D. Mitra, "A novel ultra-wideband and multifunctional reflective polarization converter," 2020 IEEE 17th India Council International Conference (INDICON), 1-4, 2020.

8. Kamal, B., J. Chen, Y. Yin, J. Ren, S. Ullah, and U. Ali, "Design and experimental analysis of dual-band polarization converting metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 8, 1409-1413, 2021.
doi:10.1109/LAWP.2021.3083334

9. Yu, H. and J. Su, "Dual-band and high-efficiency re ective polarization converter based on strip grating," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 967-968, 2020.
doi:10.1109/IEEECONF35879.2020.9330064

10. Zhou, Q., G. Du, and D.Wang, "Ultra-broadband linear polarization converter based on single-layer reflective metasurface," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-4, 2020.

11. Karamirad, M., C. Ghobadi, and J. Nourinia, "Metasurfaces for wideband and efficient polarization rotation," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1799-1804, 2021.
doi:10.1109/TAP.2020.3012828

12. Baghel, A. K., S. S. Kulkarni, and S. K. Nayak, "Linear-to-cross-polarization transmission converter using ultrathin and smaller periodicity metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1433-1437, 2019.
doi:10.1109/LAWP.2019.2919423

13. Wang, S. Y., J. D. Bi, W. Liu, W. Geyi, and S. Gao, "Polarization-insensitive cross-polarization converter," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 4670-4680, 2021.
doi:10.1109/TAP.2021.3060087

14. Zhu, X., et al., "Design of a bandwidth-enhanced polarization rotating frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 940-944, 2014.
doi:10.1109/TAP.2013.2290798

15. Du, X., H. Lin, X. Shi, Y. Mao, and Y. Wu, "Triple-band metamaterial polarization converter based on substrate integrated waveguide technology," 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), 1-3, 2020.

16. Ye, Y. Q. and S. L. He, "90◦ polarization rotator using a bilayered chiral metamaterial with giant optical activity," Applied Physics Letters, Vol. 96, 203501, 2010.
doi:10.1063/1.3429683

17. Nandi, R., Nilotpal, and S. Bhattacharyya, "A transmittive type broadband cross polarization converter for mid wavelength infrared region," 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), 1-4, 2019.

18. Song, K., Y. H. Liu, Q. H. Fu, X. P. Zhao, C. R. Luo, and W. R. Zhu, "90◦ polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial," Opt. Express, Vol. 21, No. 6, 7439-7446, 2013.
doi:10.1364/OE.21.007439

19. Jing, X., X. Gui, P. Zhou, and Z. Hong, "Physical explanation of Fabry-Perot cavity for broadband bilayer metamaterials polarization converter," Journal of Lightwave Technology, Vol. 36, No. 12, 2322-2327, 2018.
doi:10.1109/JLT.2018.2808339