Vol. 109
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-04-01
5G MIMO Antenna System Based on Patched Folded Antenna with EBG Substrate
By
Progress In Electromagnetics Research M, Vol. 109, 149-161, 2022
Abstract
A novel EBG structure in the form of a square spiral cell with a via at its middle is presented in this work to improve the isolation between the antenna elements and also enhance the overall parameters of the proposed MIMO system. Wide BW is achieved for the 6-elements MIMO system operating in the frequency range from 3 GHz to 5 GHz which is suitable for 5G mobile applications. The single antenna element consists of four coupled sections printed on an FR4 substrate. To improve the performance and maintain the BW, the EBG structure is employed to increase the isolation between the antenna elements. The proposed EBG is designed to have a bandgap from 2.5 GHz to 6.5 GHz. The addition of the EBG structure between the radiating elements reduces the envelope correlation coefficient across the whole operating BW. SAR calculations are also performed using head and hand models. The performance of the proposed EBG loaded MIMO antenna is suitable to be a potential competitor for future 5G applications.
Citation
Alaa M. Hediya, Ahmed Attiya, and Walid Saber El-Deeb, "5G MIMO Antenna System Based on Patched Folded Antenna with EBG Substrate," Progress In Electromagnetics Research M, Vol. 109, 149-161, 2022.
doi:10.2528/PIERM22020101
References

1. Sun, L., Y. Li, Z. Zhang, and Z. Feng, "Wideband 5G MIMO antenna with integrated orthogonal-mode dual-antenna pairs for metal-rimmed smartphones," IEEE Transactions on Antennas and Propagation, Vol. 68, 2494-2503, 2019.
doi:10.1109/TAP.2019.2948707

2. Sim, C.-Y.-D., H.-Y. Liu, and C.-J. Huang, "Wideband MIMO antenna array design for future mobile devices operating in the 5G NR frequency bands n77/n78/n79 and LTE band 46," IEEE Antennas and Wireless Propagation Letters, Vol. 19, 74-78, 2020.
doi:10.1109/LAWP.2019.2953334

3. Dicandia, F. A. and S. Genovesi, "Exploitation of triangular lattice arrays for improved spectral efficiency in massive MIMO 5G systems," IEEE Access, Vol. 9, 17530-17543, 2021.
doi:10.1109/ACCESS.2021.3053091

4. Desai, A., T. Upadhyaya, M. Palandoken, and C. Gocen, "Dual band transparent antenna for wireless MIMO system applications," Microwave and Optical Technology Letters, Vol. 61, 1845-1856, 2019.
doi:10.1002/mop.31825

5. Garg, P. and P. Jain, "Isolation improvement of MIMO antenna using a novel flower shaped metamaterial absorber at 5.5 GHz WiMAX band," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, 675-679, 2019.
doi:10.1109/TCSII.2019.2925148

6. Khade, S. S. and S. Badjate, "Square shape MIMO antenna with defected ground structure," 2018 4th International Conference on Recent Advances in Information Technology (RAIT), 1-5, 2018.

7. Cai, X. and K. Sarabandi, "A compact broadband horizontally polarized omnidirectional antenna using planar folded dipole elements," IEEE Transactions on Antennas and Propagation, Vol. 64, 414-422, 2015.
doi:10.1109/TAP.2015.2504457

8. Molins-Benlliure, J., M. Cabedo-Fabrés, E. Antonino-Daviu, and M. Ferrando-Bataller, "Effect of the ground plane in UHF Chip antenna efficiency," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, 2020.

9. Pikale, R., D. Sangani, P. Chaturvedi, A. Soni, and M. Munde, "A review: methods to lower specific absorption rate for mobile phones," 2018 International Conference On Advances in Communication and Computing Technology (ICACCT), 340-343, 2018.
doi:10.1109/ICACCT.2018.8529654

10. Tu, D. T. T., N. T. B. Phuong, P. D. Son, and V. Van Yem, "Improving characteristics of 28/38 GHz MIMO antenna for 5G applications by using double-side EBG structure," J. Commun., Vol. 14, 1-8, 2019.
doi:10.12720/jcm.14.1.1-8

11. El May, W., I. Sfar, J. M. Ribero, and L. Osman, "Design of low-profile and safe low SAR tri-band textile EBG-based antenna for IoT applications," Progress In Electromagnetics Research Letters, Vol. 98, 85-94, 2021.
doi:10.2528/PIERL21051107

12. Palandoken, M., Metamaterial-based Compact Filter Design, Intech Open, 2012.

13. Hediya, A. M., A. M. Attiya, and W. S. El-Deeb, "Multiple-input multiple-output antenna for sub-six GHz 5G applications using coupled folded antenna with defective ground surface," Progress In Electromagnetics Research C, Vol. 114, 13-29, 2021.
doi:10.2528/PIERC21050304

14. Parchin, N. O., H. J. Basherlou, Y. I. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, and P. S. Excell, "Eight-port MIMO antenna system for 2.6 GHz LTE cellular communications," Progress In Electromagnetics Research C, Vol. 99, 49-59, 2020.
doi:10.2528/PIERC19111704

15. Saleem, R., M. Bilal, H. T. Chattha, S. U. Rehman, A. Mushtaq, and M. F. Shafique, "An FSS based multiband MIMO system incorporating 3D antennas for WLAN/WiMAX/5G cellular and 5G Wi-Fi applications," IEEE Access, Vol. 7, 144732-144740, 2019.
doi:10.1109/ACCESS.2019.2945810

16. Bhavarthe, P. P., S. S. Rathod, and K. Reddy, "A compact dual band gap electromagnetic band gap structure," IEEE Transactions on Antennas and Propagation, Vol. 67, 596-600, 2018.
doi:10.1109/TAP.2018.2874702

17. Kulkarni, J., A. Desai, and C.-Y. D. Sim, "Wideband Four-Port MIMO antenna array with high isolation for future wireless systems," AEU-International Journal of Electronics and Communications, Vol. 128, 153507, 2021.

18. Khalid, M., S. Iffat Naqvi, N. Hussain, M. Rahman, S. S. Mirjavadi, M. J. Khan, et al. "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, 71, 2020.
doi:10.3390/electronics9010071

19. Jiang, W., Y. Cui, B. Liu, W. Hu, and Y. Xi, "A dual-band MIMO antenna with enhanced isolation for 5G smartphone applications," IEEE Access, Vol. 7, 112554-112563, 2019.
doi:10.1109/ACCESS.2019.2934892

20. Rao, T., A. Sudhakar, and K. Raju, "Novel technique of MIMO antenna design for UWB applications using defective ground structures,", 2018.

21. Kumar, J., "Compact MIMO antenna," Microwave and Optical Technology Letters, Vol. 58, 1294-1298, 2016.
doi:10.1002/mop.29843

22. Kumar, N. and U. K. Kommuri, "MIMO antenna H-plane isolation enhancement using UC-EBG structure and metal line strip for WLAN applications," Radio Engineering, Vol. 29, 2019.

23. Saxena, G., P. Jain, and Y. Awasthi, "High isolation EBG based MIMO antenna for X-band applications," 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), 97-100, 2019.
doi:10.1109/SPIN.2019.8711602

24. Modak, S. and T. Khan, "Cuboidal quad-port UWB-MIMO antenna with WLAN rejection using spiral EBG structures," International Journal of Microwave and Wireless Technologies, 1-8, 2021.
doi:10.1017/S1759078721000775

25. Desai, A., M. Palandoken, I. Elfergani, I. Akdag, C. Zebiri, J. Bastos, et al. "Transparent 2-element 5G MIMO antenna for sub-6 GHz applications," Electronics, Vol. 11, 251, 2022.
doi:10.3390/electronics11020251

26. Desai, A., M. Palandoken, J. Kulkarni, G. Byun, and T. K. Nguyen, "Wideband flexible/transparent connected-ground MIMO antennas for sub-6 GHz 5G and WLAN applications," IEEE Access, Vol. 9, 147003-147015, 2021.
doi:10.1109/ACCESS.2021.3123366