Vol. 111
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-06-03
Generalized Design Methodology of Highly Efficient Quad-Furcated Profiled Horns with Larger Apertures
By
Progress In Electromagnetics Research M, Vol. 111, 1-12, 2022
Abstract
In this work we demonstrate the extended and generalized methodology for the design of Quad-Furcated Profiled Horns (Q-FPHs). Based on a design case of a 4λ0×4λ0 Q-FPH, we extract the Generalized Scattering Matrix (GSM) of the enlarged quad-furcated discontinuity and provide analytical expressions for its multimode feeding. Next, the four feeding and the upper common waveguide sections are optimized accordingly through Mode-Matching (MM). The high aperture efficiency levels delivered by the methodology are verified by full-wave simulations of the optimized design case and compared to the state-of-the-art which is thereby redefined.
Citation
Charalampos Stoumpos, Jean-Philippe Fraysse, George Goussetis, Ronan Sauleau, and Hervé Legay, "Generalized Design Methodology of Highly Efficient Quad-Furcated Profiled Horns with Larger Apertures," Progress In Electromagnetics Research M, Vol. 111, 1-12, 2022.
doi:10.2528/PIERM22041107
References

1. Shafai, L., S. K. Sharma, and S. Rao, Handbook of Reflector Antennas and Feed Systems: Feed Systems, Vol. 2, Artech House Antennas and Propagation Library, Artech House, Norwood, MA, USA, 2013.

2. Chan, K. K. and S. K. Rao, "Design of high efficiency circular horn feeds for multibeam reflector applications," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 253-258, Jan. 2008.
doi:10.1109/TAP.2007.913172

3. Bhattacharyya, A. K. and G. Goyette, "A novel horn radiator with high aperture efficiency and low cross-polarization and applications in arrays and multibeam reflector antennas," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2850-2859, Nov. 2004.
doi:10.1109/TAP.2004.835233

4. Catalani, A., L. Russo, O. M. Bucci, T. Isernia, A. F. Morabito, S. Perna, D. Pinchera, and G. Toso, "Sparse arrays for satellite communications: From optimal design to realization," 32nd ESA Antenna Workshop, Noordwijk, The Netherlands, Oct. 5-10, 2010.

5. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806

6. Sotoudeh, O., P.-S. Kildal, P. Ingvarson, and S. P. Skobelev, "Single- and dual-band multimode hard horn antennas with partly corrugated walls," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 330-339, Feb. 2006.
doi:10.1109/TAP.2005.863389

7. Lier, E., D. H. Werner, and T. S. Bird, "The evolution from metal horns to metahorns: The development of EM horns from their inception to the present day," IEEE Antennas Propag. Mag., Vol. 61, No. 4, 6-18, Aug. 2019.
doi:10.1109/MAP.2019.2920098

8. Fraysse, J.-P., C. Stoumpos, H. Legay, and S. Tubau, "Multiple-port radiating element,", US Patent, Pub. No. US 2020/0176878 A1, Jun. 4, 2020.

9. Stoumpos, C., J.-P. Fraysse, G. Goussetis, R. Sauleau, C. G. González, and H. Legay, "Compact and highly efficient single and dual polarized aperture antennas with integrated multiport overmoded excitation," Proc. 15th Eur. Conf. Antennas Propag. (EuCAP'21), 1-5, Mar. 2021.

10. Stoumpos, C., J.-P. Fraysse, G. Goussetis, C. G. González, R. Sauleau, and H. Legay, "Highly efficient broadband pyramidal horn with integrated H-plane power division," IEEE Trans. Antennas Propag., Vol. 70, No. 2, 1499-1504, Feb. 2022.
doi:10.1109/TAP.2021.3111276

11. Stoumpos, C., J.-P. Fraysse, G. Goussetis, R. Sauleau, and H. Legay, "Quad-furcated profiled horn: The next generation highly efficient GEO antenna in additive manufacturing," IEEE Open J. Antennas Propag., Vol. 3, 69-82, 2022.
doi:10.1109/OJAP.2021.3134833

12. Rao, S. K. and C. Ostroot, "Design principles and guidelines for phased array and reflector antennas," IEEE Antennas Propag. Mag., Vol. 62, No. 2, 74-81, Apr. 2020.
doi:10.1109/MAP.2020.2969261

13. Angeletti, P., G. Toso, and G. Ruggerini, "Array antennas with jointly optimized elements positions and dimensions. Part II: Planar circular arrays," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 1627-1639, Apr. 2014.
doi:10.1109/TAP.2013.2281519

14. Nadarassin, M., et al. "PAFSR reconfigurable antenna feed array design," Proc. 15th Int. Symp. Antenna Technol. Appl. Electromagn., 1-6, Jun. 2012.

15. Polo-López, L., J. Córcoles, J. A. Ruiz-Cruz, J. R. Montejo-Garai, and J. M. Rebollar, "On the theoretical maximum directivity of a radiating aperture from modal field expansions," IEEE Trans. Antennas Propag., Vol. 67, No. 4, 2781-2786, Apr. 2019.
doi:10.1109/TAP.2019.2896660

16. Mician μWave Wizard, MICIAN GmbH. [Online]. Available: www.mician.com.

17. ANSYS HFSS, 3D Full-wave Electromagnetic Field Simulation by Ansoft. [Online]. Available: www.ansys.com.

18. Computer Simulation Technology (CST). Accessed on: January 12, 2021. [Online]. Available: www.3ds.com.

19. Stoumpos, C., J.-P. Fraysse, G. Goussetis, R. Sauleau, C. G. González, T. Pierré, and H. Legay, "Four-way orthomode waveguide power dividers: Subtractive and additive manufacturing," Proc. 15th Eur. Conf. Antennas Propag. (EuCAP'21), 1-5, Mar. 2021.