Vol. 111
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-06-26
A Three-Interval PWM Duty Cycle Adaptive Method for Torque Ripple Suppression of Switched Reluctance Motor
By
Progress In Electromagnetics Research M, Vol. 111, 103-117, 2022
Abstract
Aiming at the problem of excessive torque ripple of switched reluctance motor (SRM), a three-interval PWM duty cycle adaptive control strategy is proposed in this paper. The method changes the PWM duty cycle to adjust the voltage across the windings according to the torque error, divides the interval according to the inductance linear model, and adapts to different PWM duty cycles in different intervals, different speeds, and different torque errors. And the optimal PWM duty cycle group under different rotation speeds is obtained by trial and error, and this duty cycle group is used as the control method to adapt the PWM duty cycle group. Finally, through Matlab/Simulink simulation and motor platform experiments, the three-interval fixed PWM duty cycle control strategy and the three-interval PWM duty cycle adaptive control strategy in this paper are compared. The results show that the three-interval PWM duty cycle adaptive control strategy proposed in this paper has a good torque ripple suppression effect in a wide speed and wide load range.
Citation
Chaozhi Huang, Yuliang Wu, Wensheng Cao, Zhaoxin Zhu, and Yongmin Geng, "A Three-Interval PWM Duty Cycle Adaptive Method for Torque Ripple Suppression of Switched Reluctance Motor," Progress In Electromagnetics Research M, Vol. 111, 103-117, 2022.
doi:10.2528/PIERM22042601
References

1. Xia, Z., B. Bilgin, S. Nalakath, and A. Emadi, "A new torque sharing function method for switched reluctance machines with lower current tracking error," IEEE Transactions on Industrial Electronics, Vol. 68, No. 11, 10612-10622, 2021.
doi:10.1109/TIE.2020.3037987

2. Inderka, R. B., D. De, et al. "DITC-direct instantaneous torque control of switched reluctance drives," IEEE Transactions on Industry Applications, Vol. 39, No. 4, 46-51, 2003.

3. Li, H., B. Bilgin, and A. Emadi, "An improved torque sharing function for torque ripple reduction in switched reluctance machines," IEEE Transactions on Power Electronics, Vol. 34, No. 2, 1635-1644, 2019.
doi:10.1109/TPEL.2018.2835773

4. Hamouda, M. and L. Számel, "A new technique for optimum excitation of switched reluctance motor drives over a wide speed range," Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 26, No. 5, 2753-2767, 2018.
doi:10.3906/elk-1712-153

5. Gan, C., J. Wu, Q. Sun, W. Kong, H. Li, and Y. Hu, "A review on machine topologies and control techniques for low-noise switched reluctance motors in electric vehicle applications," IEEE Access, Vol. 6, 31430-31443, 2018.
doi:10.1109/ACCESS.2018.2837111

6. Cheshmeh Beigi, H. M. and A. M. Amidi, "Torque ripple minimization in SRM based on advanced torque sharing function modified by genetic algorithm combined with fuzzy PSO," International Journal of Industrial Electronics, Control and Optimization, Vol. 1, No. 1, 71-80, 2018.

7. Guoy, X., R. Zhong, M. Zhang, D. Ding, and W. Sun, "Resonance reduction by optimal switch angle selection in switched reluctance motor," IEEE Transactions on Industrial Electronics, Vol. 67, No. 3, 1867-1877, 2020.
doi:10.1109/TIE.2019.2902833

8. Song, S., G. Fang, R. Hei, J. Jiang, R. Ma, and W. Liu, "Torque ripple and efficiency online optimization of switched reluctance machine based on torque per ampere characteristics," IEEE Transactions on Power Electronics, Vol. 35, No. 9, 9608-9616, 2020.
doi:10.1109/TPEL.2020.2974662

9. Sahoo, S. K., S. K. Panda, and J. X. Xu, "Iterative learning-based high-performance current controller for switched reluctance motors," IEEE Transactions on Energy Conversion, Vol. 19, No. 3, 491-498, 2004.
doi:10.1109/TEC.2004.832048

10. Fuengwarodsakul, N. H., M. Menne, R. B. Inderka, et al. "High-dynamic four-quadrant switched reluctance drive based on DITC," IEEE Transactions on Industry Applications, Vol. 41, No. 5, 1232-1242, 2005.
doi:10.1109/TIA.2005.853381

11. Zhang, Z., H. Guo, Y. Liu, Q. Zhang, P. Zhu, and R. Iqbal, "An improved sensorless control strategy of ship IPMSM at full speed range," IEEE Access, Vol. 7, 178652-178661, 2019.
doi:10.1109/ACCESS.2019.2958650

12. Vinod, B. R., M. R. Baiju, and G. Shiny, "Five-level inverter-fed space vector based direct torque control of open-end winding induction motor drive," IEEE Transactions on Energy Conversion, Vol. 33, No. 3, 1392-1401, 2018.
doi:10.1109/TEC.2018.2824350

13. Sun, Q., J. Wu, and C. Gan, "Optimized direct instantaneous torque control for SRMs with efficiency improvement," IEEE Transactions on Industrial Electronics, Vol. 68, No. 3, 2072-2082, 2021.
doi:10.1109/TIE.2020.2975481

14. Zhang, X., K. Yan, and M. Cheng, "Two-stage series model predictive torque control for PMSM drives," IEEE Transactions on Power Electronics, Vol. 36, No. 11, 12910-12918, 2021.
doi:10.1109/TPEL.2021.3075711

15. Wang, Z., X. Wang, J. Cao, M. Cheng, and Y. Hu, "Direct torque control of T-NPC inverters-fed double-stator-winding PMSM drives with SVM," IEEE Transactions on Power Electronics, Vol. 33, No. 2, 1541-1553, 2018.
doi:10.1109/TPEL.2017.2689008

16. Boldea, I., L. N. Tutelea, L. Parsa, and D. Dorrell, "Automotive electric propulsion systems with reduced or no permanent magnets: An overview," IEEE Transactions on Industrial Electronics, Vol. 61, No. 10, 5696-5711, 2018.
doi:10.1109/TIE.2014.2301754

17. Cheng, M., L. Sun, G. Buja, and L. Song, "Advanced electrical machines and machine-based systems for electric and hybrid vehicles," Energies, Vol. 8, No. 9, 9541-9564, 2018.
doi:10.3390/en8099541

18. Hamouda, M., A. Abdel Menaem, H. Rezk, M. N. Ibrahim, and L. Számel, "Comparative evaluation for an improved direct instantaneous torque control strategy of switched reluctance motor drives for electric vehicles," Mathematics, Vol. 9, No. 4, 302-319, 2021.
doi:10.3390/math9040302

19. Cheng, Y., "Modified PWM direct instantaneous torque control system for SRM," Mathematical Problems in Engineering, 1-13, 2021.

20. Peng, F., J. Ye, and A. Emadi, "A digital PWM current controller for switched reluctance motor drives," IEEE Transactions on Power Electronics, Vol. 31, No. 10, 7087-7098, 2016.

21. Li, X. and P. Shamsi, "Model predictive current control of switched reluctance motors with inductance auto-calibration," IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, 3934-3941, 2016.
doi:10.1109/TIE.2015.2497301