Vol. 126
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-03-24
PIER M
Vol. 126, 11-18, 2024
download: 67
UHF-Band Solid Sensor Based on Tweaking Electric Field Coupled Resonator for Material Characterization
Syah Alam , Indra Surjati , Lydia Sari , Yuli Kurnia Ningsih , Munanda Yorias Fathanah , Yessi Kartini Gultom , Ghathfan Daffin , Teguh Firmansyah and Zahriladha Zakaria
This paper proposes a UHF-band microwave sensor for solid material detection based on a tweaking electric field coupled (ELC) resonator. The microwave sensor operates at a low resonant frequency of 0.82 GHz to characterize solid materials with a permittivity range of 1-9.8. The location of the sensing area is determined based on the surface of the resonator with the highest electric field. The permittivity of the sample is determined based on perturbation theory by observing the frequency shift relative to changes in the permittivity of the sample placed in the sensing area of the proposed sensor. From the measurement process, the proposed sensor has a normalized sensitivity (NS) of 1.49%, frequency detection resolution (FDR) of 0.012 GHz, and an average accuracy of 96.72%. This work has a significant contribution and can be recommended for several applications including the pharmaceutical, biomedical, and materials industries.
UHF-band Solid Sensor Based on Tweaking Electric Field Coupled Resonator for Material Characterization
2024-03-24
PIER M
Vol. 126, 1-10, 2024
download: 68
Conformal Microstrip Antennas on the Rocket Cylinder
Anita Pascawati , Muh Fakhri , Aditya Inzani Wahdiyat , Idris Eko Putro , Sonny Dwi Harsono , Mirza Zulfikar Rahmat , Rahmat Alfi Duhri , Kandi Rahardiyanti , Herma Yudhi Irwanto , Yuyu Wahyu , Arief Rufiyanto , Budi Sulistya , Evi Nur Qomariya , Cahyaning Retno Rahayu , Rizki Fadhila Ridho and Muhammad Reza Kahar Aziz
This paper presents the design of conformal microstrip antennas wrapped around on a rocket cylinder. These antennas should exhibit favorable S11-parameter values within the desired radio frequency range and an omnidirectional radiation pattern. Given their external placement on rockets, the challenge in this context is to ensure heat resistance. Two types of conformal microstrip antennas are developed to address this issue: one features an 8x1 array of rectangular patch (RP) elements, and the other consists of a single long rectangular patch (LP) element. Each antenna is wrapped around the rocket cylinder, with the patch array elements tailored to match the cylinder circumference to achieve an omnidirectional radiation pattern. Both antennas operate at a resonant frequency of 2.44 GHz and are constructed using RT/duroid 5880, a flexible material with a low dielectric constant. The antennas designs are assessed through computer simulations, followed by fabrication and measurements to analyze their performance against simulation results. The results indicate that the conformal RP antenna displays an S11 value of -24.512 dB at the center frequency of 2.445 GHz featuring a 48 MHz bandwidth, while the conformal LP antenna discloses an S11 value of -16 dB at the center frequency of 2.44 GHz having a wider bandwidth of 55 MHz. Both of the conformal RP and LP antennas exhibit an omnidirectional radiation pattern with a maximum gain of 6.13 dB and 7.21 dB, respectively. Following simulation and testing results, the antennas can tolerate temperatures up to 71.8˚C during flight tests. Although temperature variations trigger slight frequency shifts, these deviations are insignificant. Finally, the measurement results agree with the simulation ones.
Conformal Microstrip Antennas on the Rocket Cylinder