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Abstract–This study is concerned with the development of a model to
describe microwave emission from dry snow cover. The model is based
on the radiative transfer and the strong fluctuation theory. In the
model, a spherical symmetric correlation function with an exponential
form is used to describe the random permittivity fluctuations. The
phase matrix and extinction coefficient of snowpack for a spherical
symmetric correlation function are obtained by employing the strong
fluctuation theory. The vector radiative transfer equation for a layer
of a random medium is solved by using Gaussian quadrature and eigen
analysis. Comparisons with brightness temperature data at 5, 10.7,
18, 37 GHz are made. It is shown that the model fits the experimental
data by using physical parameters of the dry snow as obtained from
ground truth measurements.
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1. INTRODUCTION

Theoretical modelling in passive remote sensing deals with the bright-
ness temperature or emissivity of a target. A number of emission
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models have been developed for the earth terrain [1–3]. While all
these models aim to predict the brightness temperature or emissivity
of a target, the methods vary widely in their approach, complexity,
and range of validity. Nowadays, the frequency range of the radiome-
ters used for land applications reaches up to 100 GHz. However, the
theoretical emission models of dry snow are still restricted to a low fre-
quency limit. The aim of this study is to develop a model to describe
the emission from dry snow over a wide microwave frequency range.
The developed model is based on the radiative transfer equations and
the strong fluctuation theory.

Radiative transfer theory describes multiple scattering and trans-
mission of specific intensity in random media [1–3]. The validity crite-
rion for conventional radiative transfer equation is restricted to weak
fluctuation and small variance of permittivity. The emissivity of snow
is limited to the low-frequency approximation for which the effects of
scattering between ice particles are neglected. This limitation means
that the emissivity of snow is not dependent on grain size. In order to
investigate the properties of snow at high frequencies, the effect of scat-
tering between ice particles must be taken into account. We employ
the strong fluctuation theory to solve the problem.

In the strong fluctuation theory, an inhomogeneous layer is modelled
as a continuous random medium which can be described by a corre-
lation function. The effective permittivity which depends strongly on
the correlation functions is used to characterise the randomness and
scattering effects in the layer. The extinction coefficients and the scat-
tering phase functions in the radiative transfer equations also depend
strongly on the correlation functions. These correlation functions have
relationships with the physical parameters of discrete particles, such
as size, shape, etc. In this way, the strong fluctuation theory can be
used at high frequencies and the brightness temperature depends on
the shape and size of ice particles.

The strong fluctuation theory has been studied using the following
correlation functions:

• Spherical symmetric correlation function with exponential form
[4–6]:

ACF (r) = exp
(
− r

ls

)
, (1)

where ls is the correlation length.
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• Anisotropic correlation function with azimuth symmetric [4, 7]:

ACF (r) = exp
(
−x2 + y2

l2p
− |z|

lz

)
, (2)

where lp = lx = ly is the correlation length in horizontal direction and
lz is the correlation length in vertical direction.

• Anisotropic correlation function for ellipsoidal scatters with the
form [8–11]:

ACF (r) = exp

(
−

√
x2

l2x
+

y2

l2y
+

z2

l2z

)
, (3)

where lx, ly, and lz are the correlation lengths in x, y, and z direc-
tion, respectively.

Unfortunately, as the same correlation functions are employed by
various authors, the effective permittivity and the coefficient S of the
delta function in mean dyadic Green’s function are not identical. The
key point is that they use a different method to evaluate the principal
value of the dyadic Green’s function.

In this study, the effective permittivity for a spherical symmetric
correlation function with exponential form is used [6]. A detailed dis-
cussion on the expressions of the effective permittivity of the spherical
symmetric correlation function used by various authors [4, 5] and [6]
is given in [6]. A comparison between the measured and the predicted
dielectric properties of dry snow shows that the effective permittivity
model of Stogryn [6] provides fairly accurate results for the effective
permittivity of dry snow in the 18 to 90 GHz range [12]. Furthermore,
the coefficient S of the delta function in the mean dyadic Greens
function for the spherical symmetric correlation function has a clear
expression [4].

In this paper, the phase matrix and scattering coefficients in the
radiative transfer equation for a spherical symmetric correlation func-
tion are derived by using the strong fluctuation theory. As a result,
we derive a radiative transfer equation which has new constituents
and which is applicable to describe multiple scattering, transmission,
and thermal emission in strong fluctuating random media. The radia-
tive transfer equations are differential-integral equations which can be
solved by using the Gaussian quadrature and eigenanalysis technique
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[3, 13]. The brightness temperature of dry snow is calculated and com-
parisons with literature-based brightness temperature data at 5, 10.7,
18, 37 GHz [14] are presented.

2. FORMULATION

Our microwave emission model for dry snow is based on the solution
of the radiative transfer equation inside the snowpack by taking into
account boundaries at the soil and atmosphere interfaces (Figure. 1).
The model flow chart is shown in Figure. 2.

Figure 1. Geometrical configuration of a three-layer medium.

Inside a inhomogeneous medium, let Tv(θ, z) and Th(θ, z) denote
brightness temperatures at vertical and horizontal polarisation. The
radiation transfer equations for passive remote sensing can be written
as [14]:

cos θ
d

dz

[
Tv(θ, z)
Th(θ, z)

]
= κaT1(z) −

[
κevTv(θ, z)
κehTv(θ, z)

]

+
∫ π

0
dθ′ sin θ′

[
P11(θ, θ′) P12(θ, θ′)
P21(θ, θ′) P22(θ, θ′)

] [
Tv(θ′, z)
Th(θ′, z)

]
, (4)

where κa is the absorption coefficient, κep = κa +κsp (p = v, h) is the
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Figure 2. Model structure.

p-polarised extinction coefficient and κsp is the scattering coefficient.
θ is the incidence angle, θ′ is the scattering angle, T1(z) is the temper-
ature profile of the inhomogeneous layer, and P11(θ, θ′), P12(θ, θ′), P21

(θ, θ′), P22(θ, θ′) are the phase matrix elements.
The absorption coefficient κa is expressed as [15]:

κa = 2Im(kg) = 2k0Im
[
ε1/2
g

]
, (5)

where k0 is the wave number in free space, and εg is the quasi-static
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value of the dielectric constant of dry snow. In the strong fluctuation
theory, for a spherical symmetric correlation function, the quasi-static
permittivity εg is determined by the following equation [4]:

fv

(
εs − εg

εs + 2εg

)
+ (1 − fv) ·

(
εb − εg

εb + 2εg

)
= 0, (6)

where εs is the permittivity of ice particles, εs = εice, εb is the
permittivity of the background, εb = ε0, fv is the fraction volume.
At VHF, UHF and microwave frequencies (10 MHz–100 GHz), the
permittivity of pure and impure ice εice can be found in [16, 17].

The scattering coefficients κsv and κsh are deduced from the phase
matrix components P (θ, φ; θ′, φ′) [7]:

κsv(θ) =
∫ π

0
dθ′ sin θ′

[
P11(θ, θ′) + P21(θ, θ′)

]
(7)

κsh(θ) =
∫ π

0
dθ′ sin θ′

[
P12(θ, θ′) + P22(θ, θ′)

]
. (8)

In the strong fluctuation theory, the phase matrix P (θ, φ; θ′, φ′) ele-
ments are [7]:

P11(θ, θ′) =
∫ 2π

0
d(φ − φ′) · δ

[
cos2 θ cos2 θ′ cos2 (φ − φ′)

+ 2 sin θ cos θ sin θ′ cos θ′ cos (φ − φ′)
+ sin2 θ sin2 θ′

]
Wvv(θ, θ′; φ − φ′) (9)

P22(θ, θ′) =
∫ 2π

0
dφ · δ cos2 (φ − φ′)Whh(θ, θ′; φ − φ′) (10)

P12(θ, θ′) =
∫ 2π

0
dφ · δ cos2 θ sin2 (φ − φ′)Wvh(θ, θ′; φ − φ′) (11)

P21(θ, θ′) =
∫ 2π

0
dφ · δ cos2 θ′ sin2 (φ − φ′)Whv(θ, θ′; φ − φ′), (12)

where δ is the variance of the fluctuation as is for the spherical corre-
lation function [4]

δ = 9
ε2
g

ε2
0

[
fv

(
εs − εg

εs + 2εg

)2

+ (1 − fv) ·
(

εb − εg

εb + 2εg

)2
]

. (13)
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For the spherical correlation function with exponential form ACF (r)
= exp

(
− r

ls

)
, we have (Appendix and [18]):

Wα,β =
k4

effδ

2
1
π
· l3s

(1+2k2
eff[1−cos θ cos θ′−sin θsin θ′ cos (φ−φ′)]l2s)

3/2

·cos
[
3 arctan

(
keff

√
2[1−cos θ cos θ′−sin θ sin θ′ cos (φ−φ′)]1/2

ls

)]
, (14)

where the wave number keff is:

keff = ω
√

µεeff = k0

√
εeff

ε0
, (15)

where εeff is the effective permittivity of snow layer. In this study, the
effective permittivity of dry snow for a spherical symmetric correlation
function with exponential form is used [6].

The radiative transfer equation (4) can be solved by using Gaus-
sian quadrature and eigenanalysis technique subject to the following
boundary conditions, for 0 < θ < π/2 [13]:

Tp(θ, z = −d) = r12p(θ)Tp(π − θ, z = −d) + t12p(θ)Tsoil (16)
Tp(π − θ, z = 0) = r01p(θ)Tp(θ, z = 0) + t01p(θ)Tsky p(θ0), (17)

where r12p, r01p are reflectivities, t12p, t01p are transmissivities, and
tmnp = 1 − rmnp · θ and θ0, and θ and θ2 are related by Snells law,
respectively.

In the calculation of the reflectivity, the effective permittivity of
snow layer and soil should be known. In this study, the Stogryns model
in [6] is used to calculate the effective permittivity of dry snow. The
measured permittivity and dielectric loss factor of soil as a function of
frequency with temperature as a parameter can be obtained from [19].

The sky radiation is approximated by [13]:

Tsky p(θ0) = Tair [1 − exp(−k0a · t · sec θ0)] (18)

with Tair denoting the air temperature, k0a the absorption coefficient
of air, and t the thickness of the atmosphere.

Once the radiation transfer equation (4) is solved subject to the
boundary conditions (16) and (17), the brightness temperatures are
given by [13]:

TB(θ0) = t01p(θ)Tp(θ, z = 0) + r01p(θ0)Tsky p(θ0). (19)
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To find a possible effect due to the small roughness of the surface, we
simply modify the reflectivity rmnp according to [7]:

rmnp1 = exp(−h cos2 θ)rmnp (20)

where h is the effective roughness.

3. COMPARISON WITH OTHER MODELLING
APPROACHES AND EXPERIMENTAL DATA

Here we show the results for interpretation of experimental data col-
lected from a snow field [14] by using the microwave emission model
developed in this study. For convenience, we call this model as Contin-
uous Media Model (CM). Comparisons with the results of First-Order
Radiative Transfer Solution (FOM) [2] and Discrete Spherical Scatterer
Model (DM) [3] are also shown.

In [14], a set of four microwave radiometers operating at frequencies
5, 10.7, 18 and 37 GHz were used to measure the brightness tempera-
tures of a snow field. The only two ground truth data included are the
depth (d = 66 cm) and the temperature (T = 272 K) of the snowpack.
Other input parameters, such as the mean grain size, fraction volume,
and permittivity of the snowpack, are not available from the study.
In spite of this, we choose this date set, because in [2, 3], First-Order
Radiative Transfer Solution (FOM) and Discrete Spherical Scatterer
Model (DM) were used to interpret the same experimental data. For
each model, the unknown parameters are selected in such a way that
the model result fits into the experimental data. This is why that these
various models fit the experimental data well as shown in Figures 3–6,
but the input parameters are so different in various references as shown
in Table 1 ([1–3, 14]).

The input parameters of the Continuous Media Model (CM) for
dry snow are the measurement frequency, the temperature of snow,
the depth of snow, the mean grain size of ice particles and the volume
fraction of ice particles. The relationship between the mean grain size
D and the correlation length ls is [21]

ls = 0.85
D

3
. (21)

In the calculation, the input parameters of the Continuous Media
Model (CM) are based on measurement data except the mean grain
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Figure 3. Comparison of CM with experimental emissivity values
given in [14] at 5 GHz. Comparisons with FOM [2] and DM [3] are
also presented.

Figure 4. Comparison of CM with experimental emissivity values
given in [14] at 10.7 GHz. Comparisons with FOM [2] and DM [3]
are also presented.
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Figure 5. Comparison of CM with experimental emissivity values
given in [14] at 18 GHz. Comparisons with FOM [2] and DM [3] are
also presented.

Figure 6. Comparison of CM with experimental emissivity values
given in [14] at 37 GHz. Comparisons with FOM [2] and DM [3] are
also presented.
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Table 1. Continuous Media Model (CM) parameters in order to fit
model prediction into experimental data [14] at (a) 5 GHz, (b) 10.7
GHz, (c) 18 GHz, and (d) 35 GHz. First Order Radiative Transfer
Solution (FOM) input parameters are obtained from [2] and Discrete
Spherical Scatterer Model (DM) input parameters from [3], respec-
tively.

Model D (mm) fv d (cm) εice εeff (now) εsoil Albedo

CM 0.8 0.3 66 3.15+0.0004i 1.467+0.00010i 5.0+0.5i

FOM 1.7 0.3 66 1.476+0.00210i 5.0 0.05

DM 3.5 0.083 66 3.20+0.0005i 1.500+0.00375i 6.0+0.6i

(a)

Model D (mm) fv d (cm) εice εeff (now) εsoil Albedo

CM 0.8 0.3 66 3.15+0.0009i 1.4688+0.00050i 5.0+0.6i

FOM 1.7 0.3 66 1.4745+0.00245i 5.0 0.2

DM 3.5 0.083 66 3.20+0.0005i 1.5000+0.00375i 6.0+0.6i

(b)

Model D (mm) fv d (cm) εice εeff (now) εsoil Albedo

CM 0.8 0.3 66 3.15+0.0016i 1.4728+0.00190i 5.0+0.5i

FOM 1.7 0.3 66 1.4700+0.00212i 4.0 0.2

DM 3.5 0.083 66 3.20+0.0005i 1.5000+0.00375i 6.0+0.6i

(c)

Model D (mm) fv d (cm) εice εeff (now) εsoil

CM 0.8 0.3 66 3.15+0.0032i 1.4884+0.01210i 5.0+0.4i

DM 3.5 0.083 66 3.20+0.0005i 1.5000+0.00375i 6.0+0.6i

(d)

size and the fraction volume. The other parameters, such as the ice
permittivity εice, the effective permittivity of snow εeff are calculated
from the models [6, 16, 17]. The permittivity of soil εsoil is obtained
from [19].

The parameters used with different models at 5, 10.7, 18 and 37 GHz
are shown in Table 1. The First-Order Radiative Transfer Solution
(FOM) and Discrete Spherical Scatterer Model (DM) input parameters
as well as model predictions are obtained from [2, 3], respectively. At
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37 GHz, FOM data are not available in [2]. This is because this simple
model is not suitable for cases where multiple scattering is significant
[2].

Table 1 shows that in order to fit experimental data, the Discrete
Spherical Scatter Model (DM) requires the use of a larger grain size
(D = 3.5 mm) and smaller volume fraction (fv = 0.083) than the
other two models. In the Continuous Media Model (CM), we used the
more realistic value than DM for the grain size (D = 0.8 mm) and the
volume fraction (fv = 0.3) for the dry snow case.

The ice permittivity εice for CM and DM are almost same at 5
GHz. The value of ice permittivity εice at 5 GHz is used also for 10.7,
18 and 37 GHz in DM [3]. In the Continuous Media Model (CM), the
ice permittivity εice is calculated from the model [16] or [17]. Hence,
the imaginary part of εice is dependent on frequency.

The effective permittivity of snow εeff is quite different for vari-
ous models. References [1–3, 14] do not mention which model for the
effective permittivity of snow εeff is used. In the case of DM predic-
tions, the same values of effective permittivity of snow εeff are used
for 5, 10.7, 18 and 37 GHz in DM. In the case of Continuous Media
Model (CM), εeff is calculated according to [7]. Thus, the real part of
εeff is correctly dependent on frequency, whereas its imaginary part
increases strongly with increasing frequency.

The angular dependence of the brightness temperature was calcu-
lated by using the Continuous Media Model (CM) at the four fre-
quencies. The results are presented in Figs. 3–6. For comparison, the
experimental data [11] and results from the other two models (DM,
FOM) [2, 3] are also given in Figs. 3–6. The results show that the
agreement between the model predictions and measurements is good.
In Fig. 7, the brightness temperatures are plotted as a function of
frequency for the viewing angle of 33 degrees off nadir.

The initial motivation to develop our new model is to investigate
the properties of snow at high microwave frequencies. As we discussed
earlier in this section, FOM data are not available at 37 GHz in [2],
whereas our model can work very well at 37 GHz. Unfortunately, there
are no experimental angular dependence data for the brightness tem-
perature of the dry snow at higher frequencies up to date. The effective
permittivity and the extinction coefficients are the important parts of
our new model. Our previous studies have shown that the effective
permittivity model used here provides reasonably accurate results for
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Figure 7. Brightness temperature as a function of frequency according
to CM predictions and experimental data.

the imaginary part of the effective permittivity in the 1 to 100 GHz
range except for large grain sizes at high frequencies (60 to 90 GHz)
[12], and the extinction coefficient model predictions agree well with
the measured extinction coefficients for 35 GHz and 60 GHz and for
grain sizes smaller than 0.9 mm at 90 GHz [18]. Thus, we can expect
that our model for the brightness temperature can work up to 60 GHz,
and up to 90 GHz for small grain sizes (D < 0.9 mm). Of course, this
conclusion needs to be tested once we have the experimental data at
those high frequencies.

4. CONCLUSIONS

In this study, an emission model for dry snow is derived by using
radiative transfer equations and the strong fluctuation theory. The
input parameters of the model are frequency, temperature, snow depth,
mean grain size of ice particles, and the volume fraction of the ice
particles.
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Interpretation of experimental data collected from a snow field [14]
was made. It was shown that the model predictions agree well with
the experimental data in the frequency range from 5 to 37 GHz. The
values of input parameters for CM for the grain size (D = 0.8 mm) and
the volume fraction (fv = 0.3) are more realistic than those of DM
[3]. In our model, the ice permittivity εice, the effective permittivity
of snow εice, and the permittivity of soil εsoil are dependent on the
frequencies, whereas those parameters of the DM are the same for all
frequencies. FOM data are not available at 37 GHz in [2], whereas
our model can work very well at 37 GHz, and we can expect that
it can work up to 60 GHz, and up to 90 GHz for small grain sizes
(D < 0.9 mm).

APPENDIX. THE DERIVATION OF PARAMETER Wα,β

The calculation of the function Wα,β (see (14)) is started from [3]

Wα,β =
πk4

effδ

2
Φ

(
keff (k̂i − k̂s)

)
, (A1)

where keff is the effective wave number in snow, k̂i is the incident
direction of incident plane wave, and k̂s is the scattered direction
of scattered wave. The k̂i − k̂s in (A1) can be written in terms of
(θ, φ; θ′, φ′) as:

k̂i − k̂s =
[
(sin θ cos θ − sin θ′ cos θ′)2

+(sin θ sinφ − sin θ′ sinφ′)2 + (cos θ − cos θ′)2
]1/2

=
√

2
[
1 − cos θ cos θ′ − sin θ sin θ′ cos (φ − φ′)

]1/2
. (A2)

In (A1),Φ is the spectral density function, which is defined as the
three-dimensional Fourier transform of the normalised correlation func-
tion ACF (r̄′ − r̄′′)

Φ
(
k̄
)

=
1

8π3

∫ ∞

−∞
d3r̄ACF (r̄)eik̄·r̄. (A3)

In the spherical symmetric case with exponential correlation function
[4]:

ACF (|r̄|) = exp
(
−|r̄|

ls

)
, (A4)
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where ls is correlation length. By substituting (A4) into (A3), we
obtain:

Φ(k̄) =
1

8π3

∫ ∞

−∞
d3r̄ exp

( |r̄|
ls

)
eik̄·r̄

=
1

8π3

∫ 2π

0
dφ

∫ π

0
sin θdθ

∫ ∞

−∞
dr r2 exp

(
− r

ls

)
eikr

=
1

8π3
· 2π · 2 ·

∫ ∞

−∞
dr r2 exp

(
− r

ls

)
eikr. (A5)

The integral in (A5) is a one-dimensional Fourier transform of the
function f(r) = f2 exp (−r/ls) and the result is [20]:
∫ ∞

−∞
dr r2 exp

(
− r

ls

)
eikr = 2l3sΓ(3)

1

(1 + k2l2s)
3/2

cos [3 arctan (kls)],

(A6)
where the Gamma function Γ(3) = 2 · Wα,β can be written as:

Wα,β =
πk4

effδ

2
· 1
π2

· l3s(
1 +

[
keff

(
k̂i − k̂s

)]2
l2s

)3/2

· cos
[
3 arctan

(
keff

(
k̂i − k̂s

)
ls

)]
. (A7)

By substituting (A2) into (A7), we obtain:

Wα,β =
k4

effδ

2
· 1
π
· l3s(

1+2k2
eff [1−cos θ cos θ′−sin θ sin θ′ cos (φ−φ′)] l2s

)
3/2

·cos
[
3 arctan

(
keff

√
2[1−cos θ cos θ′−sin θ sin θ′ cos (φ−φ′)1/2

ls

)]
.(A8)
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