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Abstract–The dispersion relation and the wave polarisation coeffi-
cients of the electromagnetic waves in the ionospheric plasma have
been obtained by considering the magnetic declination. If the magnetic
declination is taken into account, the polarisation coefficients have real
and imaginary parts. It is pointed out that the peculiarity of the real
parts of the wave polarisation coefficients become more obvious in the
vicinity of the frequency ω(= ωpe + ωpi) in the ionospheric plasma,
while has no effect on the imaginary parts. This result is different
from as in the absence of the magnetic declination.
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1. INTRODUCTION

Numerous investigators [1–8] developed a theory for the propagation of
electromagnetic waves in the ionospheric plasma. Traditionally, they
made certain assumptions such as that the ambient magnetic field is
vertical and the magnetic declination is zero, which is unrealistic in
ionosphere. We assumed that the z-axis of the coordinate system
with its origin located on the ground is vertical upwards. The x-axis
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Figure 1. Geometry used for the calculation.

and y-axis are geographic eastward and northward in the northern
hemisphere respectively. Hence, the ambient magnetic field in northern
hemisphere is

B = Bxax + Byay + Bzaz (1)

where Bx = B0 cos I sin d, By = B0 cos I cos d and Bz = −B0 sin I.
I and d are the magnetic dip and the magnetic declination angles
respectively. ax,ay, and az are unit vectors. The yz plane is chosen
so that it contains the direction of propagation and wave vector k
makes angle θ with z-axis as shown in Fig. 1.

The present paper studies the effects of the magnetic declination on
the refractive indices and the wave polarisation coefficients near the
level where ω(= ωpe + ωpi) in the ionospheric plasma.

2. CONDUCTIVITY TENSOR

The force acting on the particles in the plasma is given by

mα
dVα

dt
= qα[E + Vα × B] − mαναVα (2)

where α denotes e, i and they stand for electron and ion respectively.
It is assumed that the velocities and the field vary as ei(k·r−ωt). The
current density is obtained as

Jα = σ0αE ± ωcα

να − iω
Jα × a (3)
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where σ0α

[
= Ne2

mα(να−iω)

]
is the longitudinal conductivity, ωcα =

∣∣∣ qαB
mα

∣∣∣
is the gyrofrequency, a = (cos I sin d)ax + (cos I cos d)ay + (− sin I)az

and e is the charge of electron.
Upper sign in front of ωcα is for electron and lower sign is for ion.

The standard notation of magnetoionic theory is used. The different
symbols used stand for

n : Refractive index
N : Electron and ion densities (they are assumed to be equal)
Je = −NeVe : Electron current density
Ji = NeVi : Ion current density
J = Je + Ji : Total current
ωpe : Angular plasma frequency for electron
ωpi : Angular plasma frequency for ion
ω : Angular frequency of wave
νe = νei + νen : Electron-ion and electron-neutral collision frequencies
νi = νie + νen : Ion-electron and ion-neutral collision frequencies

In a cartesian coordinates system, the solution of Eq. (3) can be
written in terms of the components of the total current as

Jx =
∑

α=e,i

σ0αEx ± sin I
∑

α=e,i

ωcα

να − iω
Jαy ± cos I cos d

∑
α=e,i

ωcα

να − iω
Jαz (4)

Jy =
∑

α=e,i

σ0αEy ∓ sin I
∑

α=e,i

ωcα

να − iω
Jαx ∓ cos I sin d

∑
α=e,i

ωcα

να − iω
Jαz (5)

Jz =
∑

α=e,i

σ0αEz∓cos I cos d
∑

α=e,i

ωcα

να−iω
Jαx±cos I sin d

∑
α=e,i

ωcα

να−iω
Jαy (6)

The upper sign are for electron. The total current can be compactly
written in terms of the conductivity tensor σ as

J = σ · E (7)

with

σ =

∣∣∣∣∣∣
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

∣∣∣∣∣∣
(8)

where

σxx = σ1 + (σ0 − σ1) cos2Isin2d (9)
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σyx = −σ2 sin I + (σ0 − σ1)cos2I cos d sin d (10)
σxz = −σ2 cos I cos d − (σ0 − σ1) cos I sin I sin d (11)
σyx = σ2 sin I + (σ0 − σ1)cos2I cos d sin d (12)
σyy = σ1 + (σ0 − σ1)cos2Icos2d (13)
σyz = σ2 cos I sin d − (σ0 − σ1) cos I sin I cos d (14)
σzx = σ2 cos I cos d − (σ0 − σ1) cos I sin I sin d (15)
σzy = −σ2 cos I sin d − (σ0 − σ1) cos I sin I cos d (16)
σzz = σ0sin2I + σ1cos2I (17)

in which longitudinal (σ0), Pedersen (σ1) and Hall (σ2) conductivi-
ties are

σ0 = Ne2

[
1

me (νe − iω)
+

1
mi (νi − iω)

]
(18)

σ1 = Ne2

[
νe − iω

me

[
ω2

ce + (νe − iω)2
] +

νi − iω

mi

[
ω2

ci + (νi − iω)2
]
]

(19)

σ2 = Ne2

[
− ωce

me

[
ω2

ce + (νe − iω)2
] +

ωci

mi

[
ω2

ci + (νi − iω)2
]
]

(20)

The conductivity tensor given in Eq. (8) is a realistic conductivity
tensor for ionospheric plasma with no assumption.

3. DISPERSION RELATION

Maxwell equations can be written as

∇× E = iωB (21)
∇× B = µ0J − iωµ0ε0E (22)

where J = σ ·E. From these equations, the following equation can be
obtained,

n2E − n(n · E) −
[
I +

i

ε0ω
σ

]
· E = 0 (23)

in which n = c
ωk and σ is given in Eq. (8) and I is unit matrix. In the

present work, it is assumed that the ionospheric plasma is collisionless.



Effects of magnetic declination on polarisation 183

By using the geometry in Fig. 1, Eq. (23) can be written as.




Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz


 ·




Ex

Ey

Ez


 = 0 (24)

where

Mxx = n2 − S − (P − S) cos2 I sin2 d (25)
Mxy = −iD sin I − (P − S) cos2 I cos d sin d (26)
Mxz = −iD cos I cos d + (P − S) cos I sin I sin d (27)
Myx = iD sin I − (P − S) cos2 I cos d sin d (28)
Myy = n2 cos2 θ − S − (P − S) cos2 I cos2 d (29)
Myz = −n2 cos θ sin θ + iD cos I sin d + (P − S) cos I sin I cos d (30)
Mzx = iD cos I cos d + (P − S) cos I sin I sin d (31)
Mzy = −n2 cos θ sin θ − iD cos I sin d + (P − S) cos I sin I cos d (32)
Mzz = n2 sin2 θ − P sin2 I − S cos2 I (33)

in which

P = 1 −
ω2

pe + ω2
pi

ω2
(34)

R = 1 −
[

ω2
pe

ω2 − ωceω
+

ω2
pi

ω2 + ωciω

]
(35)

L = 1 −
[

ω2
pe

ω2 + ωceω
+

ω2
pi

ω2 − ωciω

]
(36)

S =
1
2
(R + L) and D =

1
2
(R − L) (37)

The normal modes of the system are accordingly given by

det(M) = 0 (38)

Eq. (24) is the basic dispersion relation. The refractive index n and the
polarisation coefficients can be obtained in terms of plasma parameters.
From this determinant one can obtain two n2. Each root is associated
with a distinctive wave mode, one of them is the slow wave and the
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Figure 2. The variations of n2 with frequency ω and declination
angle d.

other is the fast wave. Fig. 2 shows the variation of the one of the
n2 with the wave frequency and the magnetic declination. It is noted
that the magnetic declination has no effect on n, near the level where
ω(= ωpe + ωpi) (cutoff point) in the ionospheric plasma.

4. WAVE POLARISATION COEFFICIENTS

Each of the two values of n2 may be substituted in to Eq. (24) to
obtain the ratios of the cartesian components of the complex electric
field vector Ex : Ey : Ez namely,

ρ1 =
Ex

Ey
= a + iγ (39)

ρ2 =
Ex

Ez
= b + iβ (40)

ρ3 =
Ey

Ez
= c + if (41)

where

a =
F1

A1
and γ =

T1

A1
(42)
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b =
F2

A2
and β =

T2

A2
(43)

c =
F3

A3
and f =

T3

A3
(44)

in which

A1 =PS−(PS−RL) cos2 I cos2 d−n2
[(

S−n2
)
sin2 θ+P sin2 I

+S cos2 I
]
− n2(P − S) cos2 I sin2 d sin2 θ (45)

F1 =sin d cos I
[
(RL−PS) cos I cos d+n2(P−S)

(
cos I sin2 θ cos d

− sin I sin θ cos θ)] (46)
T1 =D

[
−P sin I + n2

(
sin I sin2 θ + cos I cos θ sin θ cos d

)]
(47)

A2 = − RL sin2 I − PS cos2 I + n2
[
S sin2 I + P cos2 I

−
(
n2 − S

)
cos2 θ

]
− n2(P − S) cos2 I sin2 d sin2 θ (48)

F2 =sin d cos I
[
(RL − PS) sin I + n2(P − S)

(
sin I cos2 θ

− cos I cos d cos θ sin θ)] (49)
T2 =D

[
P cos I cos d − n2

(
cos I cos2 θ cos d + sin I sin θ cos θ

)]
(50)

A3 = − RL sin2 I − PS cos2 I − n2
[(

n2 − S
)
cos2 θ − S

−(P − S) cos2 I cos2 d
]
+ n2(P − S) cos2 I sin2 d cos2 θ (51)

F3 =(RL − PS) cos I sin I cos d + n2
[(

S − n2
)
cos θ sin θ

+(P − S) cos I sin I cos d] + n2(P − S) cos2 I sin2 d cos θ sin θ (52)
T3 =D

(
n2 − P

)
cos I sin d (53)

5. NUMERICAL SOLUTIONS AND DISCUSSIONS

The calculations of the polarisation coefficients have been done for ge-
ographic coordinates of (39◦N, 40◦E, I = 55.6) at hmF2 height.
The used plasma parameters have been obtained by using IRI for June
at 1200LT. The angle θ and the sunspot number R are taken as
30◦ and 10 respectively. The wave frequencies are selected around the
cutoff frequency ω(= ωpe + ωpi). The magnetic declination angles are
taken as 0◦, 5◦, 10◦, 15◦ and 20◦. If the magnetic declination is taken
into account, it is found from Eqs. (39)–(41), the polarisation coeffi-
cients ρ1, ρ2 and ρ3 have real and imaginary parts. If the magnetic
declination is not considered, Eqs. (46), (49) and (53) vanish, then the
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polarisation coefficients, ρ1 and ρ2 become pure imaginary and ρ3 is
real. These means that there are phase differences between Ex and
Ey, Ex and Ez while Ey and Ez are in phase.

The variations of a, b, c, γ, β, and f with frequency and the
magnetic declination angle are given in Fig. 3–5. It is noted that the
effect of the magnetic declination on ρ1, ρ2 and ρ3 is evident. The
peculiarity of the real parts of ρ1, ρ2 and ρ3 become more obvious in
the vicinity of the frequency ω(= ωpe + ωpi). The values of a, b and
c show a sharply pronounced maximum as seen in Figs. 3a, 4a and 5a.
However, the imaginary parts of ρ1, ρ2 and ρ3 are not affected by
the declination angle around the frequency ω(= ωpe + ωpi) (Figs. 3b,
4b and 5b).

As shown in Fig. 2, the cutoff of the wave occurs at the frequency
3.4×107 rad/sec. This frequency is equal to ω(ωpe +ωpi). This means
that P is zero at this frequency, then Eqs. (47), (50) and (53) vanish.
The real and imaginary parts of the ρ1, ρ2 and ρ3 at the cutoff
frequency becomes as follows:

If d is not considered If d is considered

ρ1 a = 0 a = tan d
γ = 0 γ = 0

ρ2 b = 0 b = − cot I sin d
β = 0 β = 0

ρ3 c = − cot I c = − cot I cos d
f = 0 f = 0

These results show that if one neglects the magnetic declination
angle in the wave equations, there is no Ex field at the cutoff point.
However, if the magnetic declination is taken into account, then Ex

field exists and the magnitudes of Ex, Ey, Ez fields depend on the
declination angle d (Fig. 6). The imaginary part of the ρ3 is zero. So
that Ey and Ez have the same phase and linear polarisation.
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Figure 3a. The variations of a with frequency ω and declination
angle d.

Figure 3b. The variations of γ with frequency ω and declination
angle d.
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Figure 4a. The variations of b with frequency ω and declination
angle d.

Figure 4b. The variations of β with frequency ω and declination
angle d.
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Figure 5a. The variations of c with frequency ω and declination
angle d.

Figure 5b. The variations of f with frequency ω and declination
angle d.
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Figure 6. The variations of a, b, c with the declination angle d at
cutoff.
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