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1. INTRODUCTION

Green functions represent basic solutions to differential equations sub-
ject to some additional (boundary) conditions. Here we consider prob-
lems without finite boundaries. Green functions of this kind can be
interpreted as fields arising from point, line or plane sources (corre-
sponding to three, two and one dimensional Green functions, respec-
tively) in a medium of infinite extent. Knowledge of the Green func-
tion of a certain medium can essentially simplify solving electromag-
netic boundary-value problems in the medium in question. In fact,
instead of solving differential equations with boundary conditions, one
can derive integral equations for unknown boundary sources or obtain
solutions for source problems through simple integrations.

For the moment, knowledge of Green functions of different media
appears quite limited, due to insufficient knowledge of solutions asso-
ciated with corresponding differential operators. It is well known that
problems in general linear (bi-anisotropic) media [1] lead to polyno-
mial partial-differential operators of the fourth order [2]. Their solu-
tions have not, however, been widely discussed in scientific literature.
On the other hand, dyadic Green functions corresponding to different
boundary conditions in simple isotropic media have been thoroughly
treated in the famous monograph by C. T. Tai [3].

The main purpose of the present paper is to derive Green function
solutions to some polynomial operators of the fourth order which have
importance in building solutions for Green dyadics in different media.
Only problems of static or time-harmonic origin leading to equations
of the elliptic type are discussed here. As an introduction, solutions for
some second-order operators are also given. The results are displayed
in tabular form in an Appendix for convenience. Also methods of
solution, grown from the experience of these authors in solving Green
dyadics for various media, are shown in concise form and they may
have application to other similar problems.

2. GREEN FUNCTIONS

Green function G(r) is a solution to a differential equation defined by
the partial differential operator 1 L(∇) :

1 The minus sign in front of the delta function is a convenience not obeyed by

all authors. Sometimes it is absorbed in the definition of the operator.
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L(∇)G(r) = −δ(r). (1)

Symbolically, we can write the solution in the form

G(r) = − 1
L(∇)

δ(r). (2)

To solve time-harmonic electromagnetic fields in linear bi-anisotropic
media the basic problem is to find the dyadic Green function depending
on the dyadic parameters of the medium. The basic problem involves a
dyadic operator of the second order operating on the dyadic unknown
which consists of nine scalar functions to be solved. This can always
be reduced to the problem of a single scalar Green function involving a
scalar fourth-order operator, the Helmholtz determinant operator. For
the electric field this operator can be written as [2]

L(∇)=det He(∇)=det
[
−

(
∇×I−jkoξr

)
·µ−1

r ·
(
∇×I+jkoζr

)
+k2

oεr

]
,

(3)
εr, µr, ξr, and ζr denoting the relative dyadic parameters of the
medium. In the general case, when expanded, the Helmholtz deter-
minant operator has nonvanishing differential operators of all orders
from 0 to 4. For some special media the expression can be simpli-
fied. For example, for the class of so-called decomposable media, the
fourth-order operator can be factorized, written as the product of two
second-order operators [8].

In addition to the differential equation, suitable radiation conditions
are needed at infinity for the uniqueness of the solution. Normally it
is required that power is transported by the electromagnetic fields to-
wards infinity, away from the source, and not the other direction. What
this means for a solution to the fourth-order operator, which is a kind
of potential function, is not so obvious. When the solutions are applied
to making Green dyadics representing electromagnetic fields, the solu-
tions of the fourth-order operator equations should match the radiation
conditions of the Green dyadics. This problem is not addressed here.
The intention is just to find analytic Green-function solutions G(r)
corresponding to operators L(∇) . For more information on radiation
conditions in bi-anisotropic media, see [9, 10].

A few words on the notation applied in the analysis: operations
with dyadics are defined in [2]. Arbitrary vectors are denoted by a, b
and unit vectors by u, v. Three and two-dimensional radial position
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vectors are respectively denoted by r and ρ = uxx + uyy and their
lengths by r and ρ . The two-dimensional differential operator is
denoted by ∇t. S denotes an arbitrary symmetric dyadic and St a
two-dimensional symmetric dyadic. The operator A : ∇∇ = ∇ · A · ∇
can always be replaced by S : ∇∇ where S is the symmetric part of
the dyadic A . Affine transformation through a symmetric dyadic is
understood so that the identity ∇r = I is invariant. Thus, if ∇ is

transformed to S ·∇ , we must transform r to S
−1

·r and similarly in
two dimensions. Uniaxial dyadics are denoted by α and β with their
axes along the unit vector uz . For example, we have

α = αtIt + αzuzuz. (4)

3. EVALUATION OF SOME GREEN FUNCTIONS

Green function expressions corresponding to some typical operators are
derived here in concise form to demonstrate methods used for obtaining
the solutions. The results are summarized in the Appendix as a table
in the form L(∇) ⇒ G(r) .

3.1 Second-Order Operators

The basic Green functions in three, two and one dimensions are well
known:

(
∇2 + k2

)
G(k; r) = −δ(r), G(k; r) =

e−jkr

4πr
, (5)

(
∇2

t + k2
)
Gt(k;ρ) = −δ(ρ), Gt(k; r) =

1
4j

H
(2)
0 (kρ), (6)

(
∂2

z + k2
)
Gz(k; z) = −δ(z), Gz(k; z) =

1
2jk

e−jk|z|. (7)

L(∇) = S : ∇∇ + k2

The basic Green function problem and solution (5) can be transformed

affinely through a symmetric dyadic S
1/2

[2] as

r → S
−1/2

· r, ∇ → S
1/2

· ∇, (8)

r =
√

r · r → Ds =

√
S
−1

: rr, ∇2 → S : ∇∇ (9)
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to the form
(
S : ∇∇+k2

)
G

(
k;S

−1/2
·r

)
=−δ

(
S
−1/2

·r
)

=−
√

det S δ(r). (10)

Thus, the solution of
(
S : ∇∇ + k2

)
Gs(k; r) = −δ(r) (11)

can be expressed as

Gs(k; r) =
1√

det S
G

(
k;S

−1/2
· r

)
=

e−jkDs

4π
√

det S Ds

. (12)

Here we have assumed that the symmetric dyadic S is complete, i.e.,

that it has the inverse S
−1

. In the converse case this leads to a two-
dimensional problem considered next.

One has yet to define the branch of the distance function Ds so
that the result satisfies radiation conditions in the infinity, which def-
inition obviously depends on the dyadic S. For example, if S is real
or Hermitian and positive definite, we have S : rr > 0 for r �= 0, and
the positive square root must be chosen to ensure outward propagation
of the wave.

L(∇t) = St : ∇t∇t + k2

To study the affine transformation of the two-dimensional Green func-
tion problem (6) we introduce a two-dimensional symmetric dyadic St

as a part of the three-dimensional dyadic

S = St + Suzuz, uz · St = St · uz = 0. (13)

From the inverse [2]

S
−1

=
1
S

uzuz +
uzuz

×
× St

spmSt

, spmSt =
1
2
St

×
× St : I (14)

we can identify its two-dimensional part and call it the two-dimensional
inverse of St :

S
−1

t =
uzuz

×
× St

spmSt

. (15)
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Thus, we can define the two-dimensional affine transformation as

ρ → S
−1/2

t · ρ, ρ =
√

ρ · ρ→
√

S
−1

t : ρρ =

√√√√St : (uz × ρ)(uz × ρ)

spmSt

,

(16)

∇t→S
1/2

t · ∇t, ∇2
t→St : ∇t∇t, (17)

and transform the problem to

(
St : ∇t∇t+k2

)
Gt

(
k;S

−1/2

t · ρ
)

= −δ

(
S
−1/2

t ·ρ
)

= −
√

spmStδ(ρ).

(18)
The solution to

(
St : ∇t∇t + k2

)
Gst(k; ρ) = −δ(ρ) (19)

can thus be written as

Gst(k;ρ) =
1√

spmSt

Gt

(
k;S

−1/2

t ·ρ
)

=
1

4j

√
spmSt

H
(2)
0

(
k

√
S
−1

t :ρρ

)

=
1

4j

√
spmSt

H
(2)
0


k

√
St : (uz × ρ)(uz × ρ)√

spmSt


 . (20)

Here we assume that spmSt �= 0. In the converse case the problem
becomes basically one dimensional.

The previous two-dimensional problem (19) can also be written in
three-dimensional form by adding the delta function δ(z) :

(
St : ∇∇ + k2

)
[Gst(k; r)δ(z)] = −δ(r), (21)

whence the corresponding solution is Gst(k;ρ)δ(z), where Gst(k;ρ)
equals (20).

L(∇) = ab : ∇∇ + k2

This problem is related to the two-dimensional one because we can as-
sume without restricting generality that a and b are vectors orthog-
onal to uz. The case of parallel vectors (a × b = 0) leads basically
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to the operator of the one-dimensional type ∂2
x + k2 and is excluded.

The Green function satisfies

L(∇)G(r) =
(
St : ∇∇ + k2

)
G(r) = −δ(r), (22)

where St is the symmetric part of the dyad ab,

St =
1
2
(ab + ba). (23)

Assuming

spmSt = −1
4
(a × b) · (a × b) �= 0, (24)

we can apply (20) to give the solution

G(r) = Gst(k;ρ)δ(z)

=
1

2j
√

−(a × b) · (a × b)
H

(2)
0

(
2k

√
(uz · a × ρ)(uz · b × ρ)√

−(a × b) · (a × b)

)
δ(z).(25)

The question about the branches of the square roots has been discussed
in [6].

L(∇) = S : ∇∇ + 2a · ∇ + k2

Assuming S complete and symmetric, this operator can be expressed
as

L(∇) = S : ∇∇ + 2a · ∇ + k2

= S :
(
∇+S

−1
·a

) (
∇+S

−1
·a

)
+k2

a, ka =

√
k2−S

−1
: aa. (26)

Because for any function f(r) we can write
(
∇+S

−1
·a

)
f(r) = exp

(
−a · S

−1
· r

)
∇

[
exp

(
a · S

−1
· r

)
f(r)

]
, (27)

the equation for the Green function can be written as

(
S : ∇∇+k2

a

)[
exp

(
a · S

−1
·r

)
G(r)

]
= − exp

(
a · S

−1
·r
)

δ(r)=−δ(r).

(28)
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This has the solution

G(r) = exp
(
−a·S

−1
· r

)
Gs(ka, r) = exp

(
a·S

−1
· r

)
e−jkaDs

4πDs
. (29)

The special case a = 0 gives the earlier result (12).

3.2 Fourth-Order Operators

The fourth-order operators considered here are all products of
second-order operators which means that the most general cases are
not covered. Some of the factorized fourth-order operator problems
can be solved in terms of solutions to the second-order problems. As
a simple example of such a problem we consider the following:

∇2
t

(
∂2

z + k2
)
G(r) = −δ(r). (30)

This can be solved by splitting it in two factors as

G(r) =
−1

∇2
t (∂2

z + k2)
δ(r) = −−1

∇2
t

δ(ρ)
−1

∂2
z + k2

δ(z)=
1

4πjk
ln(γρ)e−jk|z|.

(31)

L(∇) =
(
D(∇) + k2

1

) (
D(∇) + k2

2

)

Here D(∇) is a second-order operator. The Green function for the
factorized operator L(∇) can be solved in terms of the Green functions
of the factor operators. This can be done by making the partial fraction
expansion

G(r) =
−1(

D(∇) + k2
1

) (
D(∇) + k2

2

)δ(r)

=
1

k2
2 − k2

1

−1
D(∇) + k2

1

δ(r) +
1

k2
1 − k2

2

−1
D(∇) + k2

2

δ(r)

=
1

k2
2 − k2

1

GD(k1; r) +
1

k2
1 − k2

2

GD(k2; r). (32)

The Green function GD(k; r) is the solution to

(
D (∇) + k2

)
GD(k; r) = −δ(r). (33)
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This method can be applied to various operators. For example, when
D(∇) = ∂2

z , we have from (7)

GD(k; r) =
e−jk|z|

2jk
δ(ρ), (34)

G(r) =

(
1

k2
2 − k2

1

e−jk1|z|

2jk1
+

1
k2

1 − k2
2

e−jk2|z|

2jk2

)
δ(ρ). (35)

The latter can be rewritten by introducing new parameters k, K as

k2 = k + K, k1 = k − K, (36)

whence we have

G(r) =
e−jk|z|

4jkk1k2

[
cos(K|z|) + jk|z|sin(K|z|)

K|z|

]
δ(ρ). (37)

L(∇) =
(
D(∇) + k2

)2

The Green function corresponding to an operator of the square type
is obtained as the limit k1→k2→k from the previous case. Denoting
k1 = k and k2 = k + ∆ , we have

G(r) =
−1

(D(∇) + k2)2
δ(r) = − lim

∆→0

GD(k2; r) − GD(k1; r)
k2

2 − k2
1

= − lim
∆→0

G(k + ∆, r) − G(k; r)
∆(2k + ∆)

= − 1
2k

∂

∂k
G(k; r). (38)

Applying this to the basic operators in one, two and three dimensions
gives us

−1
(∂2

z + k2)2
δ(r) = (1 + jk|z|)e

−jk|z|

4jk3
δ(ρ), (39)

−1(
∇2

t + k2
)2 δ(r) =

ρ

8jk
H

(2)
1 (kρ)δ(z), (40)

−1
(∇2 + k2)2

δ(r) =
je−jkr

8πk
. (41)
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These expressions can be checked by operating once by D(∇) + k2.
For example,

(
D(∇) + k2

) −1
(D(∇) + k2)2

δ(r) =
−1

D(∇) + k2
δ(r) = GD(k; r) (42)

gives the Green dyadic corresponding to the operator in the previ-
ous section. For example, operating (39) by ∂2

z + k2 is seen to give
(e−jk|z|/2jk)δ(ρ).

L(∇) = ∇2
t

(
∇2 + k2

)

The Green function corresponding to this operator can be expressed
as

G(ρ, z) =
−1

∇2
t (∇2 + k2)

δ(r) =
1
∇2

t

e−jkr

4πr
. (43)

This can be solved through the following trick [4]. Writing the spheri-
cally symmetric Green function in the form

e−jkr

4πr
=

1
ρ
∂ρ

(
je−jkr

4πk

)
, (44)

the axially symmetric Green function G(ρ, z) satisfies

∇2
t G(ρ, z) =

1
ρ
∂ρ [ρ∂ρG(ρ, z)] =

1
ρ
∂ρ

[
je−jkr

4πk

]
. (45)

The expressions in square brackets must be the same except for an
arbitrary function of z denoted by f(z) :

∂ρG(ρ, z) =
je−jkr

4πkρ
+

1
ρ
f(z). (46)

The Green function G(ρ, z) can be obtained through integration [7]
as

G(ρ, z) = −
∞∫

ρ

je−jk
√

ρ′2+z2

4πkρ′
dρ′ + f(z) ln γρ

= −je−jkr

8πk

∞∫

0

(
e−jkt

t + r − z
+

e−jkt

t + r + z

)
dt + f(z) ln(γρ). (47)
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Here, γ is an arbitrary scalar making γρ a dimensionless number.
The integrals can be expanded as

∞∫

0

e−jy

y + x
dy = E1(jx)ejx, (48)

where E1(x) is the exponential integral [5]

E1(x) =

∞∫

x

e−t

t
dt, ∂xE1(x) = −e−x

x
. (49)

The Green function has thus the form

G(ρ, z)=
1

8jπk

[
E1(jk(r − z))e−jkz+E1(jk(r + z))ejkz+f(z) ln(γρ)

]
,

(50)
where a numerical factor has been absorbed in the arbitrary function
f(z). Let us postpone its choice to the next example. The final form
is given in (55).

As a simple check of (50), let us differentiate it by ∂ρ and apply
(49) together with the property ∂ρ = (ρ/r)∂r when operating on a
function of r. Doing this, we arrive at

∂ρG(ρ, z) = − ρ

8πr

(
e−jk(r−z)

r − z
e−jkz +

e−jk(r+z)

r + z
ejkz

)
=

je−jkr

4πkρ
, (51)

which coincides with (46), the starting point. Here one should note
that ∂ρG(ρ, z) is sufficient when forming the Green dyadic and the
Green function G(ρ, z) itself is not needed [4].

L(∇) =
(
∂2

z + k2
) (

∇2 + k2
)

This operator can be reduced to the previous one through a partial
fraction expansion:

G(z,ρ)=
−1

(∂2
z +k2) (∇2+k2)

δ(r)=
−1

∇2
t (∂2

z +k2)
δ(r)− −1

∇2
t (∇2+k2)

δ(r).

(52)
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Applying now the results (31) and (50), the Green function can be
expressed as

G(z,ρ) =
j

8πk

[
2e−jk|z| ln(γρ) + E1(jk(r − z))e−jkz

+ E1(jk(r + z))ejkz − f(z) ln(γρ)
]
. (53)

At this point we may consider the term containing the arbitrary func-
tion f(z). Since in the present case the operator contains ∂2

z and ∇2,
it is natural to have a solution in terms of r and z variables only.
The variable ρ can be eliminated by choosing f(z) = 2e−jk|z|. Thus
the present Green function is simplified in form to

G(z,ρ) =
j

8πk

[
E1(jk(r − z))e−jkz + E1(jk(r + z))ejkz

]
. (54)

and that of the previous operator, (50), to the form

G(ρ, z) =
1

8jπk

[
E1(jk(r − z))e−jkz

+ E1(jk(r + z))ejkz − 2e−jk|z| ln(kρ)
]
. (55)

Here the arbitrary factor γ has been chosen as γ = k. (54) can also
be derived using Fourier transform techniques showing that the terms
with ln(γρ) must vanish. This is shown explicitly for the more general
case below.

L(∇) =
(
∂2

z + k2
2

) (
∇2 + k2

1

)

The Green function of this operator can be written in the form of a
series expansion. Let us Fourier transform the equation

L(∇)G(r) =
(
∂2

z + k2
2

) (
∇2 + k2

1

)
G(r) = −δ(r) (56)

with respect to z and denote the corresponding spectral variable by
β. The spectral Green function G(ρ, β) then satisfies

(
∇2

t + k2
1 − β2

)
G(ρ, β) = − δ(ρ)

k2
2 − β2

. (57)
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The solution of this equation is given by

G(ρ, β) = − j

4

H
(2)
0

(√
k2

1 − β2ρ
)

k2
2 − β2

. (58)

Now we can apply the Neumann series expansion [13, p. 130]

H
(2)
0

(√
k2

1 − β2ρ

)
=

+∞∑
n=0

1
n!

[
ρ(k2

2 − k2
1)

2
√

k2
2 − β2

]n

H(2)
n

(
ρ
√

k2
2−β2

)
. (59)

After some manipulations this allows us to write G(ρ, β) as

G(ρ, β) = − j

4

+∞∑
n=0

1
n!

[
ρ(k2

2 − k2
1)

2

]n +∞∫

ρ

1
(ρ′)n

H
(2)
n+1

(
ρ′

√
k2

2 − β2
)

(√
k2

2 − β2
)n+1 dρ′.

(60)
In [14, p. 56, Eq. (41)] the following integral can be found

1
2π

+∞∫

−∞

j

4

H
(2)
n+1

(
ρ
√

k2
2 − β2

)

(√
k2

2 − β2
)n+1 e−jβzdβ =− r

4πρ

(
r

k2ρ

)n

h(2)
n (k2r) , (61)

with h
(2)
n (k2r) denoting the spherical Hankel function of order n and

second kind given by

h(2)
n (k2r) =

jn+1

k2r
e−jk2r

n∑
m=0

(
− j

2k2r

)m (n + m)!
m!(n − m)!

. (62)

This means that the inverse Fourier transformation G(r) of G(ρ, β)
can be written as

G(r) =
1
4π

+∞∑
n=0

1
n!

[
ρ

(
k2

2 − k2
1

)
2k2

]n +∞∫

ρ

r′

ρ′

(
r′

(ρ′)2

)n

h(2)
n

(
k2r

′) dρ′, (63)

with r′ =
√

(ρ′)2 + z2.
Now let us consider the following integral

I =

+∞∫

ρ

(r′)n−m

(ρ′)2n+1
e−jk2r′dρ′, (64)
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with m = 0, 1, . . . , n. We can also write this as

I = jn−m ∂n−m

∂kn−m
2

+∞∫

r

e−jk2τ

(τ2 − z2)n+1 τdτ. (65)

If we now expand the rational factor in the integrand in partial fractions
this becomes

I = jn−m ∂n−m

∂kn−m
2

+∞∫

r

e−jk2τ
n+1∑
i=1

α
(n)
i

[
1

(τ − z)i
− (−1)i

(τ + z)i

]
dτ, (66)

where the coefficients α
(n)
i only depend on z and follow from identi-

fying (66) with (65). It can be checked that α
(n)
1 = 0 for n > 0. A

general expression for α
(n)
i is not too easy, although not impossible,

to obtain [15]. Some functions α
(n)
i (z) can be written simply as

α
(0)
1 = 1/2, α

(1)
2 = 1/(4z), α

(2)
2 = −1/

(
16z3

)
, α

(2)
3 = 1/

(
8z2

)
. (67)

Now we can evaluate (66) using exponential integrals ([16] p.228)

I = jn−m ∂n−m

∂kn−m
2

n+1∑
i=1

α
(n)
i

{
e−jk2zEi [jk2(r − z)]

(r − z)i−1

− (−1)iejk2zEi [jk2(r + z)]
(r + z)i−1

}
, (68)

where Ei is the exponential integral of order i. With this result the
expression for G(r) finally becomes

G(r) =
j

4πk2

+∞∑
n=0

{
1
n!

[
ρ

(
k2

1 − k2
2

)
2k2

]n[
n∑

m=0

(
− 1

2k2

)m (n + m)!
m!(n − m)!

∂n−m

∂kn−m
2

]

n+1∑
i=1

α
(n)
i

{
e−jk2zEi [jk2(r − z)]

(r − z)i−1
− (−1)iejk2zEi [jk2(r+z)]

(r + z)i−1

}}
. (69)

Note that when k2 = k1 only the term with n = 0 survives and the
result of (54) is recovered.
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L(∇) = ∇2
t

(
α : ∇∇ + k2

)

The dyadic α in the operator is assumed uniaxial:

α = αtIt + αzuzuz. (70)

The Green function is obtained through affine transformation and the
previous result. Starting with

∇→α
1/2 ·∇ =

√
αt∇t+

√
αzuz∂z, r→α

−1/2 ·r =
ρ√
αt

+uz
z√
αz

, (71)

we can transform

∇2
t

(
∇2 + k2

)
G(ρ, z) = −δ(r) (72)

to

αt∇2
t

(
α : ∇∇ + k2

)
G

(
ρ√
αt

,
z√
αz

)

= −δ
(
α
−1/2 · r

)
= −

√
det α δ(r) − αt

√
αz δ(r). (73)

Thus, the solution of

L(∇)Gα(r) = ∇2
t

(
α : ∇∇ + k2

)
Gα(r) = −δ(r) (74)

becomes

Gα(r) =
1√
αz

G

(
ρ√
αt

,
z√
αz

)
. (75)

When we substitute the expression (55), the resulting Green function
is

Gα(r) =
1

8jπk
√

αz

[
E1

(
jk

(
Dα − z√

αz

))
e−jkz/

√
αz

+ E1

(
jk

(
Dα+

z√
αz

))
ejkz/

√
αz − 2e−jk|z|/√αz ln (kρ/

√
αt)

]
, (76)

where the distance function Dα(r) is defined by

Dα =
√

α
−1 : rr =

√
ρ2

αt
+

z2

αz
. (77)
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L(∇) =
(
∂2

z + k2
) (

α∇2
t + ∂2

z + k2
)

We can also generalize the Green function of the operator (∂2
z +k2)(∇2

+k2) affinely through the uniaxial dyadic α by assuming αz = 1 and
denoting αt = α. The Green function corresponding to the operator

L(∇) =
(
∂2

z + k2
) (

α∇2
t + ∂2

z + k2
)

(78)

is obtained from (54) by setting ρ→ρ/
√

α and multiplying by α :

G(z, ρ) =
jα

8πk

[
E1 (jk(Dα − z)) e−jkz + E1 (jk(Dα + z)) ejkz

]
. (79)

The distance function is now

Dα =

√
ρ2

α
+ z2. (80)

L(∇) =
(
S : ∇∇ + k2

1

) (
S : ∇∇ + k2

2

)

From the knowledge of the Green function

Gs(k; r) =
−1

S : ∇∇ + k2
δ(r) =

e−jkDs

4πDs

√
det S

, Ds =

√
S
−1

: rr, (81)

and applying the partial fraction expansion method, we can form the
Green function corresponding to the fourth-order operator equation

L(∇)G12(r) =
(
S : ∇∇ + k2

1

) (
S : ∇∇ + k2

2

)
G12(r) = −δ(r) (82)

as
G12(r) =

Gs(k1; r)
k2

2 − k2
1

+
Gs(k2; r)
k2

1 − k2
2

. (83)

To find the Green function for the fourth-order operator
(
S :∇∇+k2

)2

through the limit k1→k2→k is somewhat tedious. The result can
however be simply obtained through differentiation as

G2(r) =
−1(

S : ∇∇ + k2
)2 δ(r) = − 1

2k
∂k

−1

S : ∇∇ + k2
δ(r)

= − 1
2k

∂k
e−jkDs

4πDs

√
det S

=
je−jkDs

8πk
√

det S
. (84)
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3.3 Higher-Order Operators

L(∇) =
(
D(∇) + k2

)n

The method given previously for the squares of operators can be gen-
eralized to any positive powers through differentiation as follows:

∂k2
−1

D(∇) + k2
δ(r) = − −1

(D(∇) + k2)2
δ(r), (85)

where we denote
∂k2 =

1
2k

∂

∂k
. (86)

It must be assumed that the operator D(∇) does not depend on the
parameter k.

The differentiation principle can be applied many times:

∂2
k2

−1
D(∇) + k2

δ(r) = 2
−1

(D(∇) + k2)3
δ(r), (87)

∂n−1
k2

−1
D(∇) + k2

δ(r) = (−1)n−1(n − 1)!
−1

(D(∇) + k2)n δ(r). (88)

This makes it possible to derive expressions for Green functions corre-
sponding to any powers of operators of this kind. Assuming

G1(r) = G(k; r) =
−1

D(∇) + k2
δ(r), (89)

we have

Gn(r) =
−1

(D(∇) + k2)n δ(r) =
(−1)n−1

(n − 1)!
∂n−1

k2 G(k; r). (90)

For example, we have quite straightforwardly

−1
(∇2 + k2)3

δ(r) =
1
2
∂2

k2
e−jkr

4πr
=

1
4k

∂k

(
1
2k

∂k
e−jkr

4πr

)

=
j(1 + jkr)

32πk3
e−jkr. (91)

This satisfies

(
∇2 + k2

)2 j(1 + jkr)e−jkr

32πk3
=

(
∇2 + k2

) je−jkr

8πk
= −δ(r), (92)
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as can be easily checked.

L(∇) =
(
S : ∇∇ + k2

)n

The previous method can now be applied to find higher-order Green
functions defined by the operator

Gn(r) =
−1(

S : ∇∇ + k2
)n δ(r). (93)

In fact, identifying G1(r) = Gs(r) of (12), we can write

Gn(r)=
1

n − 1

(
− 1

2k
∂k

)
Gn−1(k; r)=

1
(n − 1)(n − 2)

(
− 1

2k
∂k

)2

Gn−2(k; r)

=
1

(n − 1)!

(
− 1

2k
∂k

)n−1

Gs(r). (94)

It is easy to find the sequence of Green functions as

G3(r)=
1
2

(
− 1

2k
∂k

)2

Gs(k; r) =
je−jkDs

32πk3
√

det S
(1 + jkDs), (95)

G4(r)=
1
3

(
− 1

2k
∂k

)
G3(k; r)=

je−jkDs

64πk5
√

det S

(
1+jkDs+

1
3
(jkDs)2

)
. (96)

More generally, the Green function defined by an operator of the order
2n :

G12···n(r) =
−1

n∏
i=1

(
S : ∇∇ + k2

i

)δ(r) (97)

can be solved through the partial fraction expansion. For example, the
Green function corresponding to n = 3, is

G123(r) =
−1(

S : ∇∇ + k2
1

) (
S : ∇∇ + k2

2

) (
S : ∇∇ + k2

3

)δ(r)

=
−1

(
k2

2 − k2
1

) (
k2

3 − k2
1

) (
S : ∇∇ + k2

1

)δ(r)
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+
−1

(
k2

1 − k2
2

) (
k2

3 − k2
2

) (
S : ∇∇ + k2

2

)δ(r)

+
−1

(
k2

1 − k2
3

) (
k2

2 − k2
3

) (
S : ∇∇ + k2

3

)δ(r)

=
Gs(k1; r)(

k2
2 − k2

1

) (
k2

3 − k2
1

) +
Gs(k2; r)(

k2
1 − k2

2

) (
k2

3 − k2
2

)

+
Gs(k3; r)(

k2
1 − k2

3

) (
k2

2 − k2
3

) . (98)

The obvious generalization is

G12···n(r) =
n∑

i=1

Gs(ki; r)
n∏

j=1
(j �=i)

(k2
j − k2

i )

. (99)

3.4 Factorized Fourth-Order Operator

For a certain class of bi-anisotropic media, so-called decomposable
media [8], the fourth-order Helmholtz determinant operator has been
shown to be factorizable as a product of two second-order operators,

L(∇) = L1(∇)L2(∇). (100)

In this case, by expressing

L2(∇) = L1(∇) + ∆(∇), (101)

the corresponding Green function

G(r) = − 1
L1(∇)L2(∇)

δ(r) (102)

can be expressed as a formal operator series by applying the previous
Green functions. In fact, assuming that the operator ∆(∇) is ‘small’,
we can formally write the series expansion

G(r) = − 1
L1(∇) [L1(∇) + ∆(∇)]

δ(r) = − 1
L2

1(∇)

∞∑
n=0

[−∆(∇)]n

Ln
1 (∇)

δ(r).

(103)
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If we can express the Green function of the inverse power operators, the
resulting Green function is given as as a series of operators operating
on known functions.

For example, consider the operator of the previous example,

L1(∇) = S : ∇∇ + k2. (104)

Thus, the Green function satisfying
(
S : ∇∇ + k2

) (
S : ∇∇ + k2 + ∆(∇)

)
G(r) = −δ(r) (105)

is obtained in the form of an expansion involving operators,

G(r) = −
∞∑

n=0

[−∆(∇)]n(
S : ∇∇ + k2

)n+2 δ(r) = −
∞∑

n=0

[∆(∇)]n ∂n+1
k2

(n + 1)!
Gs(k; r).

(106)
This series has use in finding corrections to Green functions of square
operators when the factorizable operator only slightly deviates from a
square operator. A perturbative series method of this kind was first
discussed by K. K. Mei [11] to find solution for the Green dyadic in an
anisotropic medium. The same idea was used to find a series expression
for the Green dyadic in a class of bi-anisotropic media, [12].

As a simple check of (106) let us take ∆ = k2
2 − k2, a constant. In

this case, (106) reduces to

G(r) = − 1
∆

∞∑
n=0

[∆∂k2 ]n+1

(n + 1)!
Gs(k; r) = − 1

∆

[
e∆∂k2 − 1

]
Gs(k; r)

=
1

k2
2 − k2

[Gs(k; r) − Gs(k2; r)] , (107)

which coincides with (83) with k1 = k. Here we have used the shifting
operator as

e∆∂k2f(k) = e∆∂k2f
(√

k2
)

= f
(√

k2 + ∆
)

= f (k2) . (108)

3.5 Factorized Higher-Order Operators

For general higher-order operators that can be factorized in a prod-
uct of second order operators it is possible to express the Green func-
tion as a double integral over finite intervals. Consider the operator of
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the form

L(∇) =
N∏

i=1

Li(∇), (109)

with
Li(∇) = Si : ∇∇ + 2ai · ∇ + k2

i . (110)

Let us perform a spatial Fourier transformation in three dimensions
where k becomes the Fourier variable. In spectral domain the expres-
sion (1) then becomes

L(−jk)G(k) = −1. (111)

To obtain the solution in physical space, the inverse Fourier transfor-
mation is formed as

G(r) =
1

(2π)3

∫∫∫
G(k)e−jk·rdk, (112)

where the integration runs over the whole three-dimensional k-space,
Using spherical coordinates (k, θ, φ) in the k-space we can write

the inverse transformation as

G(r) =
1

(2π)3

+∞∫

−∞

dk

π/2∫

0

dθ

2π∫

0

dφG(k)e−jk·rk2 sin θ. (113)

Note that the k-integration is running from −∞ to +∞ and the
θ-integration from 0 to π/2, which is somewhat unconventional but
essential to the further evaluation.

Expressing the position vector k in the Fourier space in spherical
coordinates as

k = ku, u = sin θ cos φux + sin θ sinφuy + cos θuz, (114)

we can write G(k) as

G(k) =
−1

N∏
i=1

(
−Si : uu

) (
k − k+

i

) (
k − k−

i

)
, (115)
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with

k±
i =

ai · u
Si : uu

±

√√√√
(

ai · u
Si : uu

)2

+
k2

i

Si : uu
. (116)

Now we assume that the branch cuts of the square roots in (116) are
such that k+

i have a negative imaginary part and that k−
i have a

positive imaginary part. For real k±
i we assume that k+

i is positive
and k−

i is negative. In general this is not always possible however from
physical grounds this will often be the case. This choice implements
some kind of radiation condition.

Using the previous assumptions we can evaluate the k-integration
with the Cauchy residue theorem in closed form for u · r > 0 as

G(r, θ, φ) =

+∞∫

−∞

G(k)e−jku·rk2dk

=
2πj

N∏
i=1

(
−Si : uu

)
N∑

j=1

e−jk+
j u·r

(
k+

j

)2

N∏
i=1,i�=j

(
k+

j − k+
i

) N∏
i=1

(
k+

j − k−
i

) . (117)

Here we have assumed that all the k+
i are different. When some of

the k+
i are equal then the Cauchy residue theorem can be used for a

higher-order pole. When u · r < 0 the residues in the poles k−
i have

to be considered. The space domain Green function

G(r) =
1

(2π)3

π/2∫

0

dθ

2π∫

0

dφG(r, θ, φ) sin θ, (118)

has two remaining integrals over φ and θ that cannot be evaluated in
closed form. Since they run over finite intervals a numerical integration
using for example Gaussian quadrature formulas is straight forward.

APPENDIX. TABLE OF GREEN FUNCTIONS

A number of Green functions G(r) corresponding to a number of op-
erators L(∇) and satisfying (1) are presented in the following table in
the form

L(∇) ⇒ G(r). (119)
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Green functions corresponding to two- and one-dimensional operators
are given in three-dimensional form, i.e., with explicit extra delta func-
tions.

A.1 Second-Order Operators L(∇)

∂2
z ⇒ −|z|

2
δ(ρ) (120)

∂2
z + k2 ⇒ e−jk|z|

2jk
δ(ρ) (121)

∇2
t ⇒ − 1

2π
ln γρ δ(z) (122)

∇2
t + k2 ⇒ 1

4j
H

(2)
0 (kρ)δ(z) (123)

St : ∇∇ ⇒ − 1

2π

√
spmSt

ln
(

γ

√
S
−1

t : ρρ

)
δ(z) (124)

St : ∇∇ + k2 ⇒ 1

4j

√
spmSt

H
(2)
0

(
k

√
S
−1

t : ρρ

)
(125)

∇2 + k2 ⇒ e−jkr

4πr
(126)

S : ∇∇ ⇒ 1

4π
√

det SDs

, Ds =

√
S
−1

: rr (127)

S : ∇∇ + k2 ⇒ Gs(k; r) =
e−jkDs

4π
√

det S Ds

(128)

S :∇∇+2a·∇ +k2 ⇒ exp
(
−a·S

−1
·r
)

Gs

(√
k2−S

−1
:aa; r

)
(129)

ab :∇∇+k2 =St :∇∇+k2 ⇒ 1

4j

√
spmSt

H
(2)
0

(
k

√
S
−1

t :ρρ

)
δ(z) (130)

St =
1
2
(ab + ba), spmSt = −(a × b) · (a × b)/4

A.2 Fourth-Order Operators L(∇)

(
∂2

z +k2
1

)(
∂2

z +k2
2

)
⇒ e−jk|z|

4jkk1k2

[
cos (K|z|)+jk|z|sin (K|z|)

K|z|

]
δ(ρ) (131)
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k =
k2 + k1

2
, K =

k2 − k1

2(
∂2

z + k2
)2 ⇒ 1

4jk3
(1 + jk|z|) e−jk|z|δ(ρ) (132)

(
∂2

z + k2
)
∇2

t ⇒ e−jk|z|

4jπk
ln γρ (133)

(
∇2

t + k2
1

) (
∂2

z + k2
2

)
⇒ e−jk2|z|

8k2
H(2)

o (k1ρ) (134)

(
∇2

t + k2
1

) (
∇2

t + k2
2

)
⇒ H

(2)
0 (k1ρ)

4j
(
k2

2 − k2
1

) +
H

(2)
0 (k2ρ)

4j
(
k2

1 − k2
2

) (135)

(
∇2

t + k2
)2 ⇒ ρ

8jk
H

(2)
1 (kρ)δ(z) (136)

∇4
t ⇒ 1

8π
ρ2(ln kρ + 1)δ(z) (137)

∇4 ⇒ r

8π
(138)

(
∇2 + k2

1

) (
∇2 + k2

2

)
⇒ −e−jk1r − e−jk2r

4π
(
k2

1 − k2
2

)
r

=
je−jkr

8πk

sinKr

Kr
(139)

∇2
(
∇2 + k2

)
⇒ 1 − e−jkr

4πk2r
(140)

(
∇2 + k2

)2 ⇒ j
e−jkr

8πk
(141)

(
∂2

z +k2
)(
∇2+k2

)
⇒ j

8πk

[
E1(jk(r−z))e−jkz+E1(jk(r+z))ejkz

]
(142)

∇2
t

(
∇2 + k2

)
⇒ 1

8jπk

[
E1 (jk(r − z)) e−jkz + E1 (jk(r + z)) ejkz

−2e−jk|z| ln(kρ)
]

(143)

∇2
t

(
α : ∇∇ + k2

)
⇒ 1

8jπk
√

αz

[
E1

(
jk

(
Dα − z√

αz

))
e−jkz/

√
αz

+ E1

(
jk

(
Dα +

z√
αz

))
ejkz/

√
αz

− 2e−jk|z/
√

αz| ln (kρ/
√

αt)
]
, Dα =

√
α
−1 : rr (144)
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(
α : ∇∇ + k2

) (
β : ∇∇ + k2

)
⇒ 1

8jπ(βt − αt)k

[
[E1 (jk(Dα − z))

−E1 (jk(Dβ − z))] e−jkz + [E1 (jk(Dα + z))

−E1 (jk(Dβ + z))] ejkz

]
, (with αz = βz = 1) (145)

(
S : ∇∇ + k2

1

) (
S : ∇∇ + k2

2

)
⇒ Gs(k1; r)

k2
2 − k2

1

+
Gs(k2; r)
k2

1 − k2
2

(146)

(
S : ∇∇ + k2

)2
⇒ jDs

2k
Gs(k; r) =

je−jkDs

8πk
√

det S
(147)

A.3 Higher-Order Operators L(∇)

(
S :∇∇+k2

1

)(
S :∇∇+k2

2

)(
S :∇∇+k2

3

)
⇒ Gs(k1; r)(

k2
2 − k2

1

) (
k2

3 − k2
1

) (148)

+
Gs(k2; r)(

k2
1 − k2

2

) (
k2

3 − k2
2

) +
Gs(k3; r)(

k2
1 − k2

3

) (
k2

2 − k2
3

) (149)

(
S : ∇∇ + k2

)3
⇒ j (1 + jkDs) e−jkDs

32πk3
√

det S
(150)

(
S : ∇∇ + k2

)4
⇒

j
(
1 + jkDs + 1

3 (jkDs)
2
)

e−jkDs

64πk5
√

det S
(151)

n∏
i=1

(
S : ∇∇ + k2

i

)
⇒

n∑
i=1

Gs(ki; r)
n∏

j=1
(j �=i)

(
k2

j − k2
i

) (152)
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