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Abstract—In an attempt to bridge the gap between theory and
applications, this paper brings together a few diverse subjects, and
presents them as much as possible in self-contained form.

A general perturbation method is developed for calculating the
first order effects in quite general bi-anisotropic materials. The advan-
tage of this approach is the feasibility of generating solutions of the
Maxwell equations for the complicated media, in terms of well-known
solutions for simple media.

Specifically, the present study was motivated by a need to
provide a theoretical framework for polarimetric glucometry methods,
presently under investigation, in the hope of gaining better under-
standing of the systems and their limitations, as well as suggesting
new configurations for acquiring better data. To that end, we chose to
analyze gyromagnetic effects in lossless magneto-optical systems.

Some representative examples have been chosen, and the obtained
results, for various situations involving plane and spherical waves, are
discussed. It is shown that the specific configuration of the magnetic
fields affect the solutions. Generally speaking, the magnetic fields
create new multipoles in the resultant wave fields.

Another interesting feature of the present approach is the fact that
we get the elementary Faraday rotation effect without resorting to a
pair of two oppositely oriented circularly polarized waves, as usually
done. Consequently we are able to discuss explicitly complicated situ-
ations involving non-planar waves and various external magnetic fields.
The penalty is of course the restricted validity of the model to small
non-isotropic effects.
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1. INTRODUCTION

In general we write the Maxwell equations in the form

∂r ×E = −∂tB− jm
∂r × H = ∂tD + je
∂r · D = ρe

∂r · B = ρm

(1)

where the indices e, m refer to electric, magnetic sources, respectively.
The magnetic sources are added for completeness, although they do
not have an independent physical meaning. However they provide a
mathematical tool for dealing with problems, e.g., the perturbation
scheme used here.

In the time harmonic domain with the harmonic factor given by
e−iωt the transformed set of (1) becomes

∂r × E = iωB− jm
∂r ×H = −iωD + je
∂r · D = ρe

∂r · B = ρm

(2)
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At this point we introduce the constitutive relations for simple isotropic
media in the form

D = εE

B = µH
(3)

where the constitutive parameters ε, µ are scalars. The system of
equations (2) is recast in the form

∂r × Ee = iωBe

∂r × He = −iωDe + je
∂r · De = ρe

∂r · Be = 0

∣∣∣∣∣∣∣∣∣

∂r × Em = iωBm − jm
∂r × Hm = −iωDm

∂r · Dm = 0

∂r · Bm = ρm

(4)

where E = Ee + Em etc., and the indices on the fields indicate
whether they are e, or m, induced. Clearly the summation of the
two sets of equations (4) yields back the original Maxwell equations
(2). Substituting (3) into (4) yields

∂r ×Ee = iωµHe

∂r ×He = −iωεEe + je
∂r ·Ee = ρe/ε

∂r ·He = 0

∣∣∣∣∣∣∣∣∣

∂r ×Em = iωµHm − jm
∂r ×Hm = −iωεEm

∂r · Em = 0

∂r · Hm = ρm/µ

(5)

The two systems in (5) possess similitude properties

je ⇔ −jm, ρe ⇔ −ρm, Ee ⇔ Hm, He ⇔ Em, ε = −µ (6)

Accordingly, by substituting into the left set in (5) the corresponding
fields indicated by (6), the right hand side of (5) is obtained, and
vice-versa. These symmetry relations facilitate a more efficient
manipulation of both sets.

Applying a divergence operator to the two vector equations of each
set in (5) leads to

∂r · je,m − iωρe,m = 0 (7)

written together for the e, m, indices and recognized as the relation
usually referred to as the equation of continuity, or conservation of
charge.

The general solution for the fields in terms of the source current
is worked out carefully in many books, e.g., [1, 2]. Accordingly, we
obtain the general formula

E(r) =

∫

V (r′)

dV (r′)
{
Γ̃ (r, r′) · je(r′)iωµ−∂r×Γ̃ (r, r′) · jm(r′)

}

H(r) =

∫

V (r′)

dV (r′)
{
Γ̃ (r, r′) · jm(r′)iωε + ∂r×Γ̃(r, r′) · je(r′)

} (8)
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where the two equations are similar subject to the transformation (6).
In (8)

Γ̃ (r, r′) =
(
Ĩ + k−2∂r∂r

)
G(r− r′), k2 = ω2µε

G(r − r′) =
eik|r−r′|

4π|r − r′|

(9)

with k denoting the amplitude of the propagation vector k; here G, Γ̃
are the scalar, and its corresponding dyadic, respectively, free space
Green’s functions, satisfying the wave equations

∂r × ∂r × Γ̃ − k2Γ̃ = Ĩδ(r − r′)

∂2
rG(r− r′) + k2G(r − r′) = −δ(r − r′)

(10)

where δ(r− r′) = δ(x − x′)δ(y − y′)δ(z − z′) denotes the spatial
Dirac’s delta function which becomes singular at r− r′ = 0. The
theory summarized in (8)–(10) is amply used in the literature. The
introduction of the dyadic Green’s function (9) is attributed to [3].
See [2, 4] for theory and further references. Note that in (8), (9),
the integration variable is r′, while the derivatives ∂r are in terms
of the coordinates r, hence the differential and integral operations
are independent. As far as the differential operators are concerned,
the vectors dependent on r′ are to be taken as constant vectors.
Consequently terms involving the curl operation can be written as(
∂r × Γ̃

)
· je,m(r′) = (∂rG)× je,m(r′), and similarly we have (∂r∂r)G ·

je,m(r′) = (∂r∂rG) · je,m(r′). These relations will be used to actually
solve forms like (8) for the applications considered below. For more
details see Appendix A.

2. THE PERTURBATION METHOD

A similar method to that below has been used to explore problems
involving moving media [5]. Exponential approximations as used below
have been introduced before [6]. In general, we consider bi-anisotropic
media whose constitutive relations can be included in the form

D = εE + ã · E + b̃ · H
B = µH + c̃ · H + d̃ · E

(11)

where ε, µ are scalars, and ã, b̃, c̃, d̃ are the pertinent dyadics. The
only limitation on the dyadics, and this is the pivot for the present
discussion, is that they can be considered as perturbing the simple
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media. I.e., when ã, b̃, c̃, d̃ vanish, then we get back simple isotropic
media.

It is therefore suggestive to implement a perturbation scheme.
Thus we understand all the fields to have a zero order and a first order
component, e.g., E = E0 + E1 etc. Substituting the fields into the
constitutive relations (11), and separating zero order and first order
terms, we obtain,

D0 = εE0

B0 = µH0

D1 = εE1 + ã · E0 + b̃ · H0

B1 = µH1 + c̃ · H0 + d̃ · E0

(12)

where terms of the order ã · E1 etc. are neglected, provided the
dyadics are sufficiently small. Substituting E = E0 + E1 etc. into
(2) and separating zero order and first order terms, we obtain for the
zero order fields (2) itself, with index zero attached to all field and
source variables. The solution for the zero order fields is achieved
by performing the integrations (8), with the dyadic Green’s function
(9) and with index zero attached to all field and source variables.
The solutions for specific problems depend on the aforehand provided
source fields, and in comparison to the solution for the full fledged
bi-anisotropic system are simpler to derive.

The first order perturbation scheme prescribes

∂r ×E1 = iωµH1 + iω
(
c̃ · H0 + d̃ ·E0

)
= iωµH1 − j1,m

∂r × H1 = −iωεE1 − iω
(
ã ·E0 + b̃ · H0

)
= −iωεE1 + j1,e

ε∂r · E1 = −∂r ·
(
ã · E0 + b̃ ·H0

)
= ρ1,e

µ∂r · H1 = −∂r ·
(
c̃ · H0 + d̃ · E0

)
= ρ1,m

(13)

where on the right-hand side of equations (13) we have identified the
first order current and charge sources, in terms of the supposedly
already known fields obtained by solving for the zero order terms, using
(8). Thus the new quantities j1,e, j1,m, ρ1,e, ρ1,m are not additional
unknowns, but rather known functions. As such, they allow us to
consider them as the source (inhomogeneous) terms of the differential
equations (13).

Similarly to (7) we now have

∂r · j1;e,m − iωρ1;e,m = 0 (14)

indeed all the expressions for the zero order terms follow through, and
therefore we are still dealing formally with an isotropic medium, and
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the solution for the first order perturbation fields is given by the analog
of (8), i.e.,

E1(r) =

∫

V (r′)

dV (r′)
{
Γ̃ (r, r′) · j1,e(r

′)iωµ − ∂r × Γ̃ (r, r′) · j1,m(r′)
}

H1(r) =

∫

V (r′)

dV (r′)
{
Γ̃ (r, r′) · j1,m(r′)iωε + ∂r × Γ̃ (r, r′) · j1,e(r

′)
}

(15)
where the details of the differential operations in the integrals (15) are
explained in the previous section.

The above results are complicated by a lot of detail, but
nevertheless provide explicit formulas for the derivation of the first
order anisotropic material effects from the zero order solution. In
order to compact the notation, some shorthand conventions will be
introduced. We introduce the solution in the form of integral dyadic
operators acting on the zero-order solutions

E1 =

(∫
Ã

)
·E0 +

(∫
B̃

)
· H0

H1 =

(∫
C̃

)
· H0 +

(∫
D̃

)
· E0

(16)

In (16) the fields on the left, E1 = E1(r), H1 = H1(r), are functions
of the location vector r, while on the right we have E0 = E0(r

′), H0 =
H0(r

′), which are expressed in terms of the integration variables r′,
and thus operated upon within the integral by the dyadic operators
defined by boldface script characters. The integral symbol stands for∫

=
∫
V (r′) dV (r′) as in (8) and (15). The dyadic operators are given

by
Ã = ω2µΓ̃ · ã + iω∂r′ × Γ̃ · d̃
B̃ = ω2µΓ̃ · b̃ + iω∂r′ × Γ̃ · c̃
C̃ = ω2εΓ̃ · c̃− iω∂r′ × Γ̃ · b̃
D̃ = ω2εΓ̃ · d̃ − iω∂r′ × Γ̃ · ã

(17)

For the special case where the zero order Maxwell equations are
given in a sourceless domain, i.e.,

∂r ×H0 = −iωεE0

∂r × E0 = iωµH0

∂r · E0 = 0

∂r ·H0 = 0

(18)
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it is feasible to use the first two equations (18) to express H0 in terms
of E0 and vice-versa, hence, without going into the details, it is clear
that (16), (17) can be rearranged in the form

E1 =

(∫
Ẽ

)
· E0

H1 =

(∫
F̃

)
· H0

(19)

Again, without going into the details, the innate symmetry of
Maxwell’s equations (2) will produce some symmetries in (17), (19),
which should be further investigated for specific cases.

To the first order we may write eα = 1 + α. Consequently (19)
can be exploited to represent the fields in yet another form

E =

[
Ĩ +

(∫
Ẽ
)]

· E0 = e
∫

Ẽ · E0

H =

[
Ĩ +

(∫
F̃

)]
· H0 = e

∫
F̃ ·H0

(20)

which might be notationally more convenient.
We have accomplished our goal: The first-order solution of the

field problem in the presence of an arbitrary anisotropy inclusion is
given by the solution of the limiting case simple medium, and the first
order correction is accomplished by operations on these solutions.

3. A SIMPLE PLANE WAVE EXAMPLE AND
BOUNDARY CONSIDERATIONS

To better understand how the perturbation method works, we consider
a simple case where an isotropic dielectric medium, possessing a
different parameter, is embedded in the ambient medium. Accordingly
we consider an infinite ambient space characterized by ε1 in which
a slab region of material possessing a dielectric constant ε1 + ε2 is
embedded, with ε1 À ε2. The slab region extends from z = a to z = b.
The zero order field is a plane wave propagating in the z direction

E0 = x̂E0e
i(kz−ωt) (21)

According to (12), (13), the equivalent current source for the
perturbation field is given by

j1,e = −iωã · E0 = −iωε2Ĩ · E0 = −iωε2E0 (22)
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combined with (21).
The specialization of (15) to the present case is a one dimensional

integral (see Appendix A for more detail)

E1(z) = ω2µε2x̂E0

b∫

a

dz′G(z′ − z)ei(kz′−ωt)

G(z′ − z) =
i

2k

{
eik(z′−z), z′ ≥ z

e−ik(z′−z), z′ ≤ z

(23)

see (A6) in Appendix A but note the primed and unprimed z-variable
and its role in the integral. Thus for an observation point z ≥ b we
obtain

E1(z) = ω2µε2x̂E0
i

2k
ei(kz−ωt)(b − a) = iγx̂E0e

i(kz−ωt) (24)

which is once again a plane wave, like the zero order wave exciting it,
except for a change in amplitude, depending on the extent of the active
region (b − a), and displaying a phase shift i = eiπ/2. An addition of
a small phasor (24) perpendicularly in phasor space with respect to
the original phasor (21) is tantamount to a phase shift of (21) by γ
radians, i.e., the total field will now be given by

E(z) = E0(z) + E1(z) = E0(z)(1 + iγ) ≈ E0(z)eiγ (25)

We are expecting a wave (21) passing through a region of length (b−a)
possessing a different propagation vector k′ to acquire an extra phase
shift

γ = (k′ − k)(b − a), k′ = ω
√

µ(ε1 + ε2) ≈ ω
√

µε1

(
1 +

ε2

2ε1

)
(26)

and it is easily verified that (25), (26) are consistent with (24).
For an observation point z ≤ a we obtain

E1(z) = ω2µε2x̂E0
i

2k
e−i(kz+ωt)

b∫

a

dz′e2ikz′

= x̂E0
ε2

4ε1
e−i(kz+ωt)

(
e2ikb − e2ika

)
(27)

displaying a backwards propagating plane wave, actually two reflected
waves from the faces z = a, z = b of the slab region, with opposite
signs. Depending on the ratio a/b these two waves can reinforce or
annihilate each other.
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An important point to note is that the medium parameters
themselves give rise to first order reflected waves, therefore subsequent
transmission or reflection effects produced by the perturbed medium
need not be considered. For example, in a situation where the slab
region is backed up with a real reflector at z = b, the field (24) will be
reflected, and must be taken into account. However, it is already a first
order term, and cannot invoke new effects: On its passage back, the
interaction of the first order field with the perturbed medium region
is neglected, since this would lead to higher order perturbation terms
which are consistently neglected in our discussion. On the other hand,
the reflection of the zero order wave (21) and the interaction of the
reflected wave with the perturbed medium, must be adequately taken
into account.

One must also be aware of the discontinuity in the derivative of
(23), and generally the singularity of the Green’s function in (10), when
performing integrations like (15), (23), when the observation point is
within the perturbed medium.

This simple example outlines the method employed here and will
be exploited for discussing various examples of plane and spherical
waves in the presence of gyromagnetic media.

4. GYROMAGNETIC MEDIA

Gyromagnetic or magneto-optic media display the celebrated Faraday
rotation effect. Accordingly the orientation of the field polarization†

is changing. These media are characterized by a preferred direction,
introduced by an external constant or slowly varying magnetic field,
rendering the medium anisotropic, even though the ambient medium
(in the absence of the externally imposed magnetic field) might
be isotropic. A general overview [7] of magneto-optical effects in
general optically active crystalline or amorphous materials indicates
the various effects. In general we have the electromagnetic fields
defined in special directions in space, but in addition the externally
imposed magnetic field and the crystalline structure define additional
preferred directions, rendering the medium to be anisotropic in a very
complicated manner.

Our immediate interest is mainly in investigating such effects as
perturbations, using the above theory. Note however that choosing
the geometry of the perturbed region, as well as the direction of

† unfortunately the same word is used to indicate the direction of the fields in space,
usually the E field, and also refers to the creation of induced dipoles, or the reorientation
of existing permanent dipoles in the medium. To distinguish the two concepts we shall use
the phrases “field polarization”, and “dipole polarization”, respectively.
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the external field, affects the resulting first order field, as explained
below. As mentioned above, we are restricting the present discussion to
cases of negligible losses, which considerably simplifies the expressions
involved.

For some representative (rather than exhaustive) references to
the literature on electromagnetic properties of dielectric materials, see
for example [8–11], who also provide references linking the subject
to the vast existing literature. In essence, we are interested here
in dipole polarization effects produced by time dependent electric
fields, e.g., the electromagnetic waves propagating within the region
of interest, in the presence of imposed static or quasi static slowly
varying magnetic fields. There are a number of processes characterizing
dipole polarization, see for example [8, 9]: One category is orientational
polarization, evident in materials that in the absence of an applied field
possess randomly oriented permanent dipole moments. The applied
electric field exerts a torque that strives to align the dipoles along
the electric field lines. The effect is similar to para-, and ferro-,
magnetism, although the analogy should not be carried too far. Water
is a good example for such polarizable materials; another effect is
ionic or molecular dipole polarization, occurring in materials possessing
positive and negative ions which tend to displace themselves when an
electric field is applied. Salt (sodium chloride NaCl) is a good example
for such media. Then there is electronic induced dipole polarization:
This effect is evident in most materials, even when permanent dipoles
are present, and it occurs when an applied electric field displaces the
electron “cloud” center of an atom relative to the nucleus. Sometimes,
as for example in ionized gases, the effect is strong enough to consider
the creation of free electrons, forming an electron cloud in the presence
of a background of sluggish heavy ions of positive net charge. By
displacing part of the electron cloud, dipole polarization due to net
positively and negatively displaced charges will be created, and the
resulting Coulomb force will act to pull the charges back in order
to reestablish charge neutrality. A good example for such dipole
polarization are ionized gases, such as the ionospheric plasma medium.
The electronic induced dipole polarization is somewhat similar to
diamagnetic effects in magnetic media, i.e., the induced dipoles are
oriented in the opposite direction relative to the field that creates them.
In a naive fashion, we can think about two charged plates carrying
opposite charges situated in the medium, and consider the effect of
the created field: A permanent dipole will tend to be aligned with
its negative charge pointing towards the initial positive charge, and
thus the dipoles (by convention being depicted as an arrow pointing
from their negative to the positive charge) point in the same direction
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as the field (by convention pointing from the positive to the negative
charge). On the other hand, the induced dipoles are created by charge
separation. Consider a field line connecting the two charged plates.
The dipoles created start and end on these charges, and must therefore
point in the opposite direction relative to the electric field. Once again,
the analogy with diamagnetism should not be carried too far.

The response of material media to electric fields, i.e., dispersion,
depends on the frequency. Loosely speaking, and without considering
possible resonance mechanisms, at higher frequencies the inertia
diminishes the response. Thus water, which for static or quasi-
static electric fields displays a relative permittivity εr ∼ 81, with a
corresponding refractive index n ∼ 9, at optical frequencies evinces
a lower value, n ∼ 1.4. The inertia effects are of course more
pronounced for the heavier constituents of the medium. On the other
hand electrons, due to their smaller mass, are easily moved by the
applied electric fields. In other words, relaxation time of the electrons
is much smaller compared to atomic and molecular constituents. At
lower frequencies, when the orientational and ionic dipole polarization
is dominant, the electronic dipole polarization is as a rule negligible,
however as the frequency rises, the effect becomes more pronounced.
Consequently the processes giving rise to Faraday rotation are mainly
due to electronic dipole polarization as described above. This rather
naive explanation motivates the choice taken here for the constitutive
relations.

This naive picture is emerging from the mathematical modeling
given in the literature, e.g., see [9]. Accordingly for a typical
dielectric we start at low frequencies with the highest value of
the dielectric constant, which becomes smaller as the three dipole
polarization mechanisms manifest themselves, with typically one
resonance frequency for each mechanism. For the electronic dipole
polarization, which is an induced dipole polarization process, the
dielectric parameter becomes negative, as our discussion above
suggested.

In order to account for all processes, including the gyromagnetic
effect, we use a formula close to those given in the literature, [7, 12],

D = ε0

(
εmĨ + Ỹ

)
· E (28)

where Ĩ is the unit dyadic or matrix, εm lumps the relative permittivity
due to heavier atoms or molecules, i.e., orientational, and ionic dipole
polarization, and Ỹ accounts for electronic dipole polarization which
also gives rise to the gyromagnetic effects.

The geometry associated with Ỹ is depicted in Fig. 1. The wave is
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Figure 1. Geometry for the external magnetic field.

propagating in the z direction. The coordinate system is chosen such
that the external magnetic field lies in the y-z plane.

Essentially using Kelso’s [13] notation (but note — he is using eiωt

for the time factor, cf. (2)) for the ionospheric plasma medium case, in

(28) εm = 1, and Ỹ is given by

Ỹ = −W




1 iYL −iYT

−iYL
(
1 − Y 2

T

)
−YT YL

iYT −YTYL
(
1 − Y 2

L

)


 (29)

For brevity of notation we use a mixed notation of dyadic (boldface
characters with a tilde) and matrix (denoted by square parentheses)
expressions. The position of the matrix element, e.g., 1, 2 corresponds
to a dyad, e.g., x̂ŷ characterized by two juxtaposed unit vectors
(boldface, circumflex characters), etc. In (28) the conduction loss
terms have already been neglected, resulting in a Hermitian matrix
(29). The symbols in (29) are given as

W =
X

1 − Y 2
, X =

ω2
N

ω2
, Y =

ωH

ω
, Y 2 = Y 2

L + Y 2
T

ω2
N =

Ne2

mε0
, ωH =

|Be||e|µ0

m

(30)
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where in (30) ωN denotes the (angular) plasma frequency, N, e, m,
denote the electron number density, charge, and mass, respectively; ωN

is a measure of the electronic polarizability, and is therefore dependent
on the effective number density of the active particles, the effective
charge they muster for the particle polarization, and their inertia. The
imposed magnetic field effect is related to the so called gyro frequency,
sometimes called the cyclotron frequency, ωH , which is dependent on
the imposed magnetic field Be, and the effective charge and mass of
the particles contributing to the effect. Treating Y as the length of
a vector Y = YL + YT directed along the imposed magnetic field,
the quantities YL, YT are then understood as the longitudinal and
transversal projections with respect to the direction of propagation of
the plane wave propagating in the medium, respectively.

The ionospheric (cold magnetized plasma medium) model is based
on the simple equation of motion of a single electron (e.g., see [13])

−mω2 = e(E + v × Be) (31)

i.e., the inertial force on the left, (31), is balanced by the Coulomb and
the Lorentz forces on the right, (31), acting on the charge. In the full
linear oscillator model, which is more appropriate for fluid and solid
media, resonance phenomena are also taken into account (e.g., see [9]
for the unmagnetized medium case, where the transition from negative
to positive permittivity is also depicted). The resonance results from
the interplay of the inertia force and the “spring action” returning force
acting on the charges and causing free oscillations at the frequency ω0

in the absence of other constraints. For a single resonance frequency
the pertinent equation of motion now leads to

−m
(
ω2 − ω2

0

)
= −m

(
1 −

ω2
0

ω2

)
ω2 = −m′ω2 = e(E + v ×Be) (32)

Comparing (32) and (31), it is evident that both can be written in the
same form, provided a new term m′ is introduced. The introduction
of an equivalent mass term is a mere formal step which allows us
to consider the formulas (29), (30) on the same footing, with the
appropriate exchange of m′ for m, thus accounting for the dispersive
properties introduced by the resonance phenomenon. It is also clear
that (29) is the limiting case of (30) when ω2 À ω2

0 can be assumed. As
indicated in [9], the electronic dipole polarization resonance effect will
be typically in the visible to ultraviolet region. Relevant information
can be found in [14, 15], for example. It is important to note that
whether the resonance effects are taken into account or not will not
affect the subsequent analytical results.
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Inasmuch as electronic dipole polarization is usually a small effect,
W can be used as the perturbation parameter. When Y = 0 in (29),

i.e., when the magnetic field vanishes, Ỹ reduces to ĨW and (28)
becomes

D = ε0(εm −W )E (33)

showing that the electronic dipole polarization has a negative sign,
which is well known in the ionospheric case, where D = ε0(1 − W )E,
with the relative permittivity being lower than one.

Another approach would be to consider Ỹ components as the
perturbation parameter. In this case the first order perturbation would
reduce (29) to

Ỹ = −XĨ − X




0 iYL −iYT

−iYL 0 0

iYT 0 0


 (34)

where the term −X Ĩ can now be combined with εmĨ in (28). Thus we
see that the full Faraday rotation phenomenon involves transversal
as well as longitudinal components of the external magnetic field.
Subtracting the effect due to (34) from the complete effect (29) leaves
the effect due to second order terms only

Ỹ = −
X

1 − Y 2




1 0 0

0 (1 − Y 2
T ) −YTYL

0 −YTYL (1 − Y 2
L )


 (35)

Constitutive relations possessing second order effect are related to the
Cotton-Mouton effect [7]. Subsequently we use (29) and consider Ỹ
in its entirety to be the perturbation parameter. This choice is less
restrictive and allows for the discussion of more general cases.

If we now specialize (12) to the case (28), (29), we get

ã = ε0Ỹ, b̃ = c̃ = d̃ = 0 (36)

which for the present class of problem vastly simplifies the general
formalism.

5. A NOTE ON SUPERPOSITION

Generally speaking, when we deal with linear differential equations,
we can superpose sources, i.e., get separate solutions for various
inhomogeneous terms, usually referred to as sources by the physicist-
engineer, and sum up the individual solutions. The coefficients
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in the differential equations cannot be superposed, much like you
cannot superpose elements in a circuit, although you can superpose
(independent) voltage and current generators.

The formalism stated above is linear. It is therefore obvious that
we may use superposition considerations, i.e., analyze the problem for
various zero order fields individually, and sum them up, as well as the
ensuing first order constituents to obtain a combined solution.

The question arises as to the superposition of perturbation
parameters, which play here a double role: They are fields for the zero
order case, but sources for the first order case. E.g., in the analysis
for gyromagnetic media in the previous section, can we compute the
results for various configurations of the external magnetic field, and
then assume that the combined first order field is due to the combined
external magnetic field? By inspection of (12) it becomes clear that if
the zero fields are recast as a sum of fields, each component of the sum
will be associated with a component of the effective first order current
density, (13), resulting in a component first order field obtained from
(15). If in (12) the perturbation constitutive dyadics are represented as
sums, we can still define a sum of effective first order current densities
in (13), and thus obtain the sum of the constituent first order fields
in (15) — provided that if the zero order fields are split into sums as
well, care is taken to include all the various cross product terms.

The situation is further complicated when the perturbation
constitutive dyadics are nonlinearly dependent on a parameter: In (29),
in view of the terms containing a product of Y or its components,
the dependence on the external magnetic field is nonlinear. It is
obvious that a superposition of different external magnetic fields will
not include cross products, and is therefore invalid. On the other hand,
restricting the discussion to first order effects in the external magnetic
field, as expressed in (34), allows for separation or superposition.

6. APPLICATION TO PLANE WAVES IN
GYROMAGNETIC MEDIA

The simple examples considered here belong to the class of problems
where the initial fields are considered as the homogeneous solutions
of (18), i.e., in a sourceless domain. We may therefore forgo the first
step of computing the zero order fields according to (8) and proceed
to compute the first order fields according to (15).

Consider the case of an incident plane wave (21), field polarized
along the x axis.. Exploiting (29), (36), and the definition of first order
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effective currents (13), yields

j1,e,x = −iωã ·E0,x = ω
X

1 − Y 2
(ix̂ + ŷYL − ẑYT ) E0,xe

i(kz−ωt) (37)

where the index x keeps track of the direction of field polarization of
the exciting wave. Similarly to what was done in (23), and using the
general one dimensional expressions (A11)–(A13), the first order field

E1 is derived. In the present context note that
(
Ĩ + k−2dzdzẑẑ

)
eikz =

(x̂x̂ + ŷŷ) eikz. Consequently in integrals of the kind (23), (24), and
(27), the z direction component of the effective current j1,e, (37), does
not feature. Hence the only effect of the transverse magnetic field YT

enters via the factor 1/(1− Y 2).
Similarly to (23), (24), we now get in the forward direction

E1,x(z) = −
ε0ω

2µ

2k

X (ix̂ + ŷYL)

1 − Y 2
(b − a)E0,xei(kz−ωt)

= (iγxx̂ + γyŷ) E0,xe
i(kz−ωt) (38)

The first term in (38) is very similar to the simple example (24),
(25), i.e., the combined field polarized in the x direction acquires an
offset phase factor eiγx similar to the one in (25). This effect in our
model depends on the magnetic field to the second order, and can be
neglected in the case where Y 2 ¿ 1. All that remains is the effect of
the background dielectric parameter as calculated in (24), (25). The
second term in (38) describes an additional wave component in the y
direction, in phase with the zero order excitation field. When added
up to the first order field, the resultant field polarization is still in
the x-y plane, but is rotated relative to the x axis by an angle of γy

radians. This is the Faraday rotation as we know it. Interestingly, in
the present formalism no need arises to discuss two plane, circularly
field polarized waves, in opposite directions of rotation, and possessing
different propagation vectors, the way it is usually done in textbooks.

For a plane wave field polarized in the y direction (37) is now
replaced by

j1,e,y = −iωã ·E0,y

= ω
X

1 − Y 2

(
−x̂YL + iŷ(1− Y 2

T )− iẑYTYL

)
E0,ye

i(kz−ωt) (39)

and the corresponding first order field now becomes

E1,y(z) =
ε0ω

2µ

2k

X
(
x̂YL − iŷ(1− Y 2

T )
)

1 − Y 2
(b − a)E0,ye

i(kz−ωt)

= (δxx̂ + iδyŷ)E0,ye
i(kz−ωt) (40)
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Comparison of (38), (40) reveals that γy = −δx, corresponding
to a Faraday rotation of the first order fields with respect to the
corresponding zero order fields, in the same sense and through the
same angle. If Y 2

T ¿ 1 then γx = δy, indicating the same phase shift
for the two first order waves, compared to their corresponding first
order ones. However if Y 2

T cannot be neglected, then the phase shift is
not identical, hence for the first order waves we are dealing with two
harmonic waves at the same frequency, whose fields are perpendicularly
polarized in space, and which are out of phase — giving rise to elliptical
polarization, with the amount of ellipticity depending on the phase
offset between the waves and their amplitudes. Obviously this is a
second order effect in powers of the components of Y , i.e., the elliptical
polarization effect is superimposed on the zero order fields and the first
order Faraday rotation effect.

7. A SIMPLE VECTOR SPHERICAL WAVE EXAMPLE

The efficacy of the present formalism is demonstrated for three
dimensional vector problems. As opposed to plane wave solutions,
the more general three dimensional ones facilitate the discussion of
nonuniform fields, e.g., converging and diverging waves as encountered
in optical systems. The present study focuses on simple sources
described by spherical waves whose spatial radiation characteristics
correspond to elementary short dipole and small loop antennas.

The present simple example is the analog of the one dimensional
case discussed above: We assume an infinite ambient space
characterized by ε1 in which a spherical shell region of material
possessing a dielectric constant ε1 + ε2 is embedded, with ε1 À ε2.
The shell region extends from r = a to r = b. Once again j1,e is given
by (22).

The simplest source wave that can be chosen here is a dipole field
given by (B1), (B2), using the lowest possible indices n = 1, m = 0.
Thus choosing for the source field

E0(r) = E0e
−iωtiM1,0(r)

= E0e
−iωtih1(kr)C0

1(r̂)
∼= E0e

−iωth0(kr)C0
1(r̂)

C0
1(r̂) = −r× ∂rY

0
1 (r̂) = −ϕ̂∂θP

0
1 = ϕ̂ sin θ

(41)

which is recognized as a magnetic dipole, i.e., the field radiated from
a small current loop, behaving as an outgoing spherical wave. The
field is polarized in the azimuthal direction, attaining its maximum at
the equator and possessing a toroidal shaped radiation pattern, with a
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circular cross section according to ϕ̂ sin θ. On the other hand, choosing

E0(r) = E0e
−iωtN1,0(r)

= E0e
−iωt

{
2h1(kr)P0

1(r̂) + ∂kr [krh1(kr)]B0
1(r̂)

}
/kr

= E0e
−iωt

{
q1,P (kr)P0

1(r̂) + q1,B(kr)B0
1(r̂)

}

∼= E0e
−iωth0(kr)B0

1(r̂)

B0
1(r̂) = r̂× C0

1(r̂) = −θ̂ sin θ, P0
1(r̂) = r̂ cos θ

(42)

we obtain an electric type dipole, i.e., a short dipole antenna oriented
along the polar axis, once again possessing a toroidal shaped radiation
pattern with a circular cross section. The field is polarized in the
meridian plane according to −θ̂ sin θ.

We will demonstrate the solution of (15) for the simple zero order
waves given in (41), (42). From (22), (41), (42) follow the expressions
for the first order equivalent current source j1,e. Substituting (B5) into
(15) and invoking the spatial and integral orthogonality relations (B4)
prescribes for the present problem, it is obvious by inspection that the
dyadic Green’s function degenerates into a single mode

Γ̃ (r, r′) =
ik

4π

3

2
M1,0(r)M

(1)
1,0(r

′) =
3ik

8π
h1(kr)j1(kr′)C0

1(r̂)C
0
1(r̂

′) (43)

Incorporating all the above in (15) we derive

E1,>(r) = ε2ω
2µ 3ik

8π E0e
−iωth1(kr)C0

1(r̂)
i

k3 f>(b, a)g

f>(b, a) =

b∫

a

d(kr′)(kr′)2j1(kr′)h1(kr′)

g =

∫
dΩ(r̂′)C0

1(r̂
′) · C0

1(r̂
′) =

8π

3

(44)

where g is the result of the orthogonality integral in (B4). The result
(44) is valid outside the spherical shell defined by a < r′ < b, for the
forward direction r > b > a. After some manipulation of (44), where
some factors were left in raw form to show how they are derived, we
find

E1,>(r) = −ε2ω
2µ

k2
E0e

−iωth1(kr)C0
1(r̂)f>(b, a)

= −ε2

ε1
E0e

−iωth1(kr)f>(b, a)ϕ̂ sin θ

∼=
ε2

ε1
E0e

−iωtih0(kr)f>(b, a)ϕ̂ sin θ (45)
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In (44), (45) f>(b, a) is a function of the limits of the integral,
corresponding to (b− a) appearing in (24). However note that it is an
integration of a complex function between real limits, hence f>(b, a) is
expected to be complex. We have tried to evaluate integrals of the kind
f>(b, a) using the mathematical package “Mathematica” [16], and got
explicit analytical representations in terms of known special functions,
however the complicated forms do not warrant being quoted here. For
large radii ka, kb À 1 the integrand of f>(b, a) becomes −eikr′ sin(kr′)
hence for kr′ large, and assuming a small loss term as discussed after
(A3), we get

f>(b, a) ∼= −i(b − a)/2 (46)

becoming the limiting case for the slab region discussed above for the
plane waves one dimensional case. Note that in (45) ih0(kr) is a real
quantity, hence for the limiting case (44), (45) can be approximated
with a phase factor, as discussed for the plane wave case (24), (25).

The same steps can be retraced to integrate (15) for a zero order
wave field given by (42) (or any combination of higher order multipoles
as given by (B1), for that matter, although the details might be
somewhat more complicated): Instead of (41) we now have

Γ̃ (r, r′) =
ik

4π

3

2
N1,0(r)N

(1)
1,0(r

′)

=
3ik

8π

(
q1P (kr)P0

1(r̂)q
(1)
1,P (kr′)P0

1(r̂
′)

+q1,B(kr)B0
1(r̂)q

(1)
1,B(kr′)B0

1(r̂
′)

)
(47)

where the various functions q1,P (kr), q1,B(kr) are defined in (42),

and in the corresponding q
(1)
1,P (kr′), q

(1)
1,B(kr′) the nonsingular spherical

Bessel functions jn(kr) replace the spherical Hankel functions hn(kr).
In view of the similar orthogonality relations (B4) everything follows
through, with the appropriate coefficients and the radial integrals
corresponding to f>(b, a) above. If the circumstances allow the use
of the approximate expression in (42), i.e., when kr, kr′ À 1 can be

assumed, then we get the approximate form (45) with B0
1(r̂) = −θ̂ sin θ

replacing C0
1(r̂) = ϕ̂ sin θ.

The corresponding case for a source within the inner shell, i.e.,
r < a < b follows the same lines, with the appropriate modifications:
We start with the same zero order fields (41), (42), but in (43) and
(47), primed and unprimed arguments must be interchanged. Consider
the zero order field (41). Retracing the above argument, we derive

E1,<(r) = − 3

8π

ε2

ε1
E0e

−iωtj1(kr)C0
1(r̂)f<(b, a)g
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= −
ε2

ε1
E0e

−iωtj1(kr)f<(b, a)ϕ̂ sin θ

∼=
ε2

ε1
E0e

−iωt=(h0(kr))f<(b, a)ϕ̂ sin θ (48)

f<(b, a) =

b∫

a

d(kr′)(kr′h1(kr′))2, g =

∫
dΩ(r̂′)C0

1(r̂
′)C0

1(r̂
′) =

8π

3

where =( ) denotes the imaginary part of the function in question, and
the approximation applies as long as kr, kr′ À 1 can be assumed.

8. APPLICATION TO VECTOR SPHERICAL WAVES IN
GYROMAGNETIC MEDIA

Strictly speaking, the theory embodied in (29) (e.g., see [13]) applies to
proper plane waves, and is based on an equation of motion involving
inertia and the Lorentz force acting on charges. Furthermore, this
theory applies to homogeneous media only, and assumes that the total
(so called “material”) derivative, and partial derivative are identical,
or in other words, second order terms in material velocity, tantamount
to nonlinear media effects, are negligible [17]. It follows that we have
to use the integral plane wave representation (B11), set up a local
coordinate system p(ξ, η, ζ), corresponding to r(x, y, z) in Fig. 1, and
find the components of the plane waves along these directions

[Eξ(r), Eη(r), Eζ(r)] = E0e
−iωt 1

2π

∫
dΩ(p̂)eikp̂·r

·


− p̂× Y

|p̂× Y|
,

(
Ĩ − p̂p̂

)
·Y

|p̂ ×Y|
, p̂


 · g(p̂) (49)

and apply (29) to these components under the integral operator. This
procedure is too complicated, and can be abated if the curvature of the
spherical waves is not too large, i.e., when kr in the associated spherical
Bessel functions is not too small. For such cases the approximation

[gξ(r̂), gη(r̂), gζ(r̂)] =


 r̂× Y

|r̂× Y|
,

(
Ĩ − r̂r̂

)
· Y

|r̂× Y|
, r̂


 · g(r̂) (50)

is adequate, according to (B7), (B11), for obtaining the components
of the scattering amplitude g(r̂) along the directions r(ξ, η, ζ) of the
local Cartesian system of coordinates, respectively.
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Figure 2. Geometry for spherical coordinates and external magnetic
field along the θ = 0 polar axis.

As a first example, consider the case of the external magnetic field
directed along the polar axis θ = 0, see Fig. 2, depicting the relation
of the spherical coordinates to the local system r(ξ, η, ζ)

j1,e,ξ = −iωã · E0,ξ = ωW
(
iξ̂ξ̂ + η̂ξ̂YL − ζ̂ξ̂YT

)
· E0,ξ

= ωW
(
iϕ̂ϕ̂ − θ̂ϕ̂Y cos θ − r̂ϕ̂Y sin θ

)
· E0e

−iωtiM1,0(r)

= ωWE0e
−iωtih1(kr)

(
iϕ̂ϕ̂ − θ̂ϕ̂Y cos θ − r̂ϕ̂Y sin θ

)
· C0

1(r̂)

= ωWE0e
−iωtih1(kr)

(
iC0

1(r̂) − θ̂Y
1

2
sin 2θ − r̂Y sin2 θ

)
(51)

where W is given in (30). Comparing (51) to (37), with the first order
fields given by (41), (21), respectively, it is seen that the first vector
term in the parentheses (51) replicates the radiation pattern of the
zero order wave, with an extra factor i, hence it amounts to adding
a phase factor to the first order wave as in (25). In view of (41)
which leads to (45), the first order field corresponding to this term
is given by (45) with ε2 replaced by −iW . See also (45), (46) and
the associated discussion there. The last vector term in parentheses
in (51) is longitudinal. And contains the factor sin2 θ. Using the
Legendre functions P0 = 1, P1 = cos θ, P2 = (3/4) cos 2θ + 1/4, we
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recast sin2 θ = (2/3)(1−P2), and derive the corresponding longitudinal
vector spherical harmonics and vector spherical waves, (B3), and thus
the contribution to the first order field can be computed from (15),
using the dyadic Green’s function (B5). It is noted that in the one
dimensional case which led to (38), (40), the longitudinal field does
not feature. In the present case, as seen from (B3), as kr increases
the longitudinal wave component becomes negligible compared to the
transversal constituent. Therefore the detailed calculation is avoided
here.

The remaining term in (51) is of particular interest because it
corresponds to the Faraday rotation phenomenon. Using the defini-
tions in (B3), we recast

θ̂ sin 2θ = −θ̂
2

3
∂θY

0
2 = −

2

3
B0

2 (52)

It is interesting to note that the wave corresponding to the vector
spherical harmonic (52) is a higher multipole term, a quadrupole term
in the present example, which unlike the zero order field possesses
zeroes at θ = 0, π/4. For this term the effective first order current
(51) is given by

j1,B = ωWE0e
−iωtih1(kr)

1

3
B0

2(r̂) (53)

and instead of (47) we now have

Γ̃ (r, r′) =
ik

4π

5

6
N2,0(r)N

(1)
2,0(r

′)

=
5ik

24π

(
q2,P (kr)P0

2(r̂)q
(1)
2,P (kr′)P0

2(r̂
′)

+ q2,B(kr)B0
2(r̂)q

(1)
2,B(kr′)B0

2(r̂
′)

)
(54)

with the appropriate functions q2,P (kr), q2,B(kr) defined in (B3) and in

the corresponding q
(1)
2,P (kr′), q

(1)
2,B(kr′) the nonsingular spherical Bessel

functions jn(kr) replace the spherical Hankel functions hn(kr). As
before, we will ignore the contribution of the longitudinal functions,
assuming large arguments in the spherical functions. Keeping all the
terms is not much more complicated, but the expressions are becoming
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cumbersome. Inserting all the above ingredients into (15) yields

E1,B,>(r) = iω2µW
5ik

24π
E0e

−iωtq2,B(kr)B0
2(r̂)

i

k3
fB,>(b, a)gB

fB,>(b, a) =

b∫

a

d(kr′)(kr′)2q
(1)
2,B(kr′)ih1(kr′)

gB =

∫
dΩ(r̂′)B0

2(r̂
′) =

24π

5
, q2,B(kr) ∼= −h0(kr)

(55)

which can be somewhat simplified, but is left in the present form to
facilitate an easy check of the various factors.

Thus we have demonstrated the feasibility of manipulating the
various vector spherical terms, and the integration of (15) under the
present circumstances. The fact that the first order field acquires new
multipoles, i.e., displays different radiation patterns is an interesting
and novel result of the present formalism.

The associated case of a first order field polarized along the η axis,
Fig. 2, follows the same lines. For this case the zero order field will be
taken as (42). The result is expected to follow the one dimensional case
(39), (40), with the appropriate modifications as shown by comparing
(37) and (51). Thus we have

j1,e,η = −iωã · E0,η

= ωW
(
−ξ̂η̂YL + iη̂η̂(1 − Y 2

T ) − iζ̂η̂YT TL

)
·E0,η

= ωW
(
ϕ̂θ̂Y cos θ + iθ̂θ̂(1− Y 2 sin2 θ) + ir̂θ̂Y sin θ

)

·E0e
−iωtN1,0(r)

∼= −ωW
(
ϕ̂θ̂Y cos θ + iθ̂θ̂

)
· E0e

−ωtB0
1(r̂)

∼= ωW
(
ϕ̂θ̂Y cos θ + iθ̂θ̂

)
· E0e

−ωtq1,B(kr)θ̂ sin θ

∼= ωW

(
ϕ̂Y

1

2
sin 2θ + iθ̂ sin θ

)
E0e

−iωth0(kr) (56)

where for brevity we decided to keep only the first order term in
Y , ignore the longitudinal functions, and approximate the spherical
functions. The similarity of (51) and (56) is then obvious, and the
computation leading to (55) follows, and need not be displayed here in
detail: The second term in parentheses in the last line, (56), replicates
the zero order excitation wave vector spherical harmonic B0

1(r̂), and
the initial zero order wave, multiplied by i; the first term, using the
definition (B3), yields a vector spherical harmonic C0

2(r̂). This is the
analog situation to (52)–(55).
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Figure 3. Geometry for spherical coordinates and circumferential
external magnetic field.

There are other axisymmetric cases that can be easily coped with.
Consider for example a circumferentially oriented field created by a
long line current coinciding with the polar axis. For this case we have

YL = 0, YT = Y0/r sin θ (57)

See Fig. 3. For a field polarized perpendicularly to the magnetic field
and the radial coordinate, we have

j1,e,ξ = −iωã · E0,ξ = ωW
(
iξ̂ξ̂ + η̂ξ̂YL − ζ̂ξ̂YT

)
· E0,ξ

= j1,e,θ = ωW
(
iθ̂ − r̂YT

)
θ̂ · E0,θ (58)

which prescribes that for the lowest dipole wave only (42) can be
chosen. At large distances the longitudinal part in (58) becomes
negligible, hence only a first order field polarized in the original
direction of the zero order field is present. As was the case in (24), such
a field can only create a phase shift, but no field polarization rotation.
The physics of this situation is easily understood by considering
the effect of the oscillating charges in the presence of the external
magnetic field: The gyration takes place in the perpendicular plane,
and the rotating charges will now produce a field along the direction
of propagation, with a quarter period phase shift. On the other hand,
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for the case

j1,e,η = −iωã · E0,η = ωW
(
−ξ̂η̂YL + iη̂η̂(1 − Y 2

T ) − iζ̂η̂YT YL

)
·E0,η

j1,e,ϕ = iωW
(
1 − Y 2

T

)
ϕ̂ϕ̂ ·E0,ϕ = iωXϕ̂ϕ̂ · E0,ϕ

(59)
only (41) can provide the lowest case dipole first order field. In this
case the field is polarized parallel to the external magnetic field, and
no gyration, hence no field polarization rotation is expected.

Other axisymmetric are easily conceived, e.g., the field of an
external field magnetic dipole oriented along the polar axis Y =
θ̂YT + r̂YL = r−3Y0(θ̂ sin θ + 2r̂ cos θ). For a more general approach,
see for example [19], discussing the general theory of electrostatic
and magnetostatic multipoles derivable from scalar potential functions.
However, calculations involving higher multipoles become increasingly
cumbersome and will not be further pursued here. More generally, both
the magnetic field and the zero order wave can be any desired functions,
and in view of (B10) the effective first order current densities (13) can
always be represented in terms of sums of vector spherical harmonics.
Using the dyadic Green’s function (B5), this facilitates the solution
of the integrals (15). In general the solution of the integrals (B10)
requires numerical techniques, therefore it is of some interest to guess
simple canonical examples as done above.

Continuing this line of thought, and in view of (55) and the steps
leading to it, it becomes clear that the structure of the magnetic field
affects the multipole configuration of the first order field. For example,
when the magnetic field is also dependent on the azimuthal angle ϕ,
it is expected that the first order field will manifest ϕ dependence as
well.

9. CONCLUDING REMARKS

The present study considers wave propagation in arbitrary bi-anisotro-
pic media. The general formalism is based on a first order perturbation
scheme which assumes that the zero order ambient medium is a
simple isotropic material. Of course, the penalty for using this
relatively simple formalism is its restricted validity for small bi-
anisotropic effects. The present study was motivated by the problem of
gyromagnetic effects in fluids where the proviso for small bi-anisotropic
effects is met. Such problems arise, for example in ocular glucose
polarimetry [18].

The material model chosen for the present study is the
gyromagnetic effect in the presence of moving charges, as observed for
magnetized cold plasma, e.g., the ionosphere, and fluid and amorphic
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solids, where in addition an ambient dielectric background is assumed.
The present model is adequate for discussing various cases of interest.
Inasmuch as the formalism is based on an integral involving the
pertinent Green’s function, it was felt that providing concrete examples
could be important for the application oriented reader, and should
be included. Examples shown include plane and spherical vector
waves, and presented in a closely knit manner, although sometimes
this required more discussion of details. General theoretical formulas,
especially those involving the properties of spherical vector waves and
harmonics are summarized in the appendices.

A general observation that emerges from the analysis is that the
geometrical configuration of the magnetic field shapes the ensuing
first order wave field — new multipole terms are generated that were
not present in the initial zero order wave field. Another interesting
observation is the fact that we derive the Faraday rotation effect with
using the usual method of separating the incident plane wave into
oppositely rotating circularly field polarized waves.

We made an effort to present the material in a way that could help
the application oriented user. To that end, many details are included,
and the paper is made self contained as much as a journal article can
allow.

APPENDIX A.

The basic theory leading to the Green’s function integral (8) is
summarized and specialized to the one dimensional problem. The
electromagnetic fields (5) can be expressed in terms of vector
potentials. E.g., for the e-indexed fields (5),

He = µ−1∂r ×Ae, Ee = iω
(
1 + k−2∂r∂r

)
Ae (A1)

where the Lorentz condition ∂r ·Ae−iωµεϕe = 0 has been incorporated
to eliminate the scalar potential in the electric field definition
Ee = −∂rϕe + iωAe = 0. We now get from (5) and (A1) a wave
equation on Ae, to which we add a corresponding definition of the
scalar Green’s function in terms of its pertinent wave equation

∂2
rAe(r) + k2Ae(r) = −µje(r)

∂2
rG(r− r′) + k2G(r − r′) = −δ(r − r′)

(A2)

where we have emphasized that the operations in (A2) are with respect
to r. to actually find the Green’s function for various dimensionalities,
media, and boundary conditions, is a separate subject which is outside
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the scope of the present study (e.g., see [2, 4]). Multiplying the first
formula (A2) by G and the second by Ae, subtracting and integrating
over space, we get

∫ (
G(r′ − r)∂2

r′Ae(r
′) −Ae(r

′)∂2
r′G(r′ − r)

)
dV (r′)

=

∮ (
G(r′ − r)∂r′Ae(r

′) − Ae(r
′)∂r′G(r′ − r)

)
· dS(r′)

=

∫ (
Ae(r

′)δ(r′ − r) − µje(r
′)G(r′ − r)

)
dV (r′)

= Ae(r)− µ

∫ (
je(r

′)G(r′ − r)
)
dV (r′) (A3)

where the arguments are included to clarify what operators act on
what arguments. The Sommerfeld radiation condition (e.g., see [19])
ensures that the surface integral in (A3) vanishes. A simple way to get
this vanishing of the waves at infinity is to assume [19] an imaginary
component in k, however small. Consequently we have

Ae(r) = µ

∫ (
je(r

′)G(r′ − r)
)
dV (r′) (A4)

and combining (A4) with (A1) the dyadic Green’s function (9) is now
introduced. Applying the same considerations to the m-indexed fields,
one finally derives (8).

For the one-dimensional case (see for example [2]) the Green’s
function is particularly simple. Here (A2) reduces to the one
dimensional wave equation, and the corresponding equation defining
the Green’s function is

d2
zAe(z) + k2Ae(z) = −µje(z)

d2
zG(z − z′) + k2G(z − z′) = −δ(z − z′)

(A5)

The pertinent Green’s function is give by

G(z − z′) =
i

2k

{
eik(z−z′), z ≥ z′

e−ik(z−z′), z ≤ z′
(A6)

To prove that (A6) is the solution of the second equation (A5) we
integrate

∞∫

−∞

((
d2

z′ + k2
)

G(z′ − z)
)

dz′ =

∞∫

−∞

((
d2

z′ + k2
)

G(z′ − z)
)

d(z′ − z)

= −
∞∫

−∞

δ(z′−z)dz′ = −1 (A7)
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It is noted that everywhere except at z = z′ we are dealing with
the homogeneous wave equation for a plane wave, i.e., the integrand(
d2

z′ + k2
)
G(z′) vanishes. In the interval −α < z′ − z < α we use the

fact that G(z′) is continuous at z′ − z = 0, therefore according to the
mean value theorem of integral calculus we get

α∫

−α

G(z′)d(z′ − z) ∼ 2αG(α) (A8)

and in the limit α → 0 (A8) vanishes. For the term in (A7) involving
the second derivative, we use the fact that the integral of the first
derivative of a function is the function itself, hence we have to evaluate

α∫

−α

dz′
(
dz′G(z′ − z)

)
d(z′ − z) =

(
dz′G(z′ − z)

)∣∣α
−α = −1

2

(
eikα + e−ikα

)

(A9)
which in the limit α → 0 becomes −1 as required.

It is now a straightforward task to adapt the one dimensional
theory to the general form (8): The correspondence of (A5) to the three
dimensional form (A2) suggests that in (A5) we multiply the equations
and subtract, to get rid of the term k2AeG. We then integrate as in
(A3). What amounts to a volume integration in (A3) becomes an
integration on z′. The Green theorem converting the volume integral
to a surface integral in (A3) follows through in a trivial manner, and
the surface integral simply becomes the value of the integrand at ±z.
Using the rule for differentiating a product we obtain

∫ (
G(z′ − z)d2

z′Ae(z
′)− Ae(z

′)d2
z′G(z′ − z)

)
dz′

=

∫ [
dz′

(
G(z′ − z)dz′Ae(z

′)
)
− dz′

(
Ae(z

′)dz′G(z′ − z)
)]

dz′

=
(
G(z′ − z)dz′Ae(z

′)− Ae(z
′)dz′G(z′ − z)

)∣∣z1

z2

=

∫ (
Ae(z

′)δ(z′ − z) − µje(z
′)G(z′ − z)

)
dz′

= Ae(z)− µ

∫ (
je(z

′)G(z′ − z)
)
dz′ (A10)

As z1 → ∞, z2 → −∞, the expressions vanish, due to the same
arguments used in (A3), and we are left with

Ae(z) = µ

∫
je(z

′)G(z′ − z)dz′ (A11)
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Adapting (A1) to the one dimensional case yields

He = µ−1 (ŷdz (x̂ · Ae)−x̂dz (ŷAe)) = µ−1dz (ŷx̂−x̂ŷ) · Ae

Ee = iω
(
Ae+k−2ẑdzdz (ẑ · Ae)

)
= iω

(
Ĩ+k−2dzdzẑẑ

)
·Ae

(A12)

Finally for one dimension (8) follows through, with z, z′ judiciously
replacing r, r′. The dyadic Green’s function corresponding to (9) will
now be given by

Γ̃ (z, z′) =
(
Ĩ + k−2dzdzẑẑ

)
G(z − z′) (A13)

and the reason we are keeping vector expressions, although this is
supposedly a one dimensional problem depending on the z coordinate
only, stems from the fact that the current densities may have
components in all directions, although the functional dependence is on
the z coordinate only. The pertinent scalar Green’s function pertinent
to (15) is provided by (A6).

APPENDIX B.

The general Green’s function integral (8) is specialized here for the
three dimensional vector problem involving spherical vector waves and
spherical vector harmonics.

Spherical vector waves are discussed in the literature [2, 19–
23]. The main results used here are highlighted for reference and
notation. The general solution of the wave equation for spherical
vector electromagnetic fields in an isotropic medium is given as a
superposition of the vector spherical waves modes

E(r) = E0e
−iωt

∞∑

n=1

n∑

m=−n

in [cn,mMn,m(r) − ibn,mNn,m(r)] (B1)

where the coefficients cn,m, bn,m are the appropriate weights of the
vector spherical waves Mn,m(r), Nn,m(r), respectively. The wave
modes are related by

∂r ×Mnm(r) = kNnm(r), ∂r ×Nnm(r) = kMnm(r) (B2)
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and defined by

Mnm(r) = hn(kr)Cm
n (r̂)

Cm
n (r̂) = −r × ∂rY

m
n (r̂) =

(
θ̂

∂ϕ

sin θ
− ϕ̂∂θ

)
Y m

n (r̂)

Nnm(r) = {n(n + 1)hn(kr)Pm
n (r̂) + ∂kr [krhn(kr)]Bm

n (r̂)} /kr

Pm
n (r̂) = r̂Y m

n (r̂)

Bm
n (r̂) = r̂ ×Cm

n (r̂) = r∂rY
m
n (r̂) =

(
ϕ̂

∂ϕ

sin θ
+ θ̂∂θ

)
Y m

n (r̂)

Y m
n (r̂) = P m

n (cos θ)eimϕ, Y −m
n (r̂) = (−1)m

(n − m)!

(n + m)!
Pm

n (cos θ)eimϕ

(B3)
where Y m

n , Pm
n , hn, are the scalar spherical harmonics, associated

Legendre functions, and the spherical Hankel functions of the first kind,
respectively. The vector spherical harmonics possess orthogonality
properties

Pm
n · Bm

n = Pm
n · Cm

n = Bm
n · Cm

n = 0
∫

dΩC−m
n · Cµ

ν =

∫
dΩB−m

n · Bµ
ν = n(n + 1)

∫
dΩP−m

n · Pµ
ν

= (−1)m4πδnνδmµ
n(n + 1)

2n + 1
∫

dΩ =

2π∫

0

dϕ

π∫

0

dθ sin θ

(B4)

The dyadic Green’s function (9) is given in terms of the vector spherical
waves as

Γ̃ (r, r′)

=
ik

4π

∞∑

n=1

n∑

m=−n

[
Mn,m(r)M

(1)
n,−m(r′)+Nn,m(r)N

(1)
n,−m(r′)

] 2n + 1

n(n+1)
(B5)

where in (B5) the superscript indicates that the spherical Hankel
functions are replaced by the nonsingular spherical Bessel functions
jn(kr). Equation (B5) applies to r > r′, the case r < r′ follows by
exchanging the primed and unprimed argument in (B5). The proof
of (B5) is amply given in the literature, essentially it follows from the
initial definition (9) and application of the so called addition theorem
for spherical Hankel functions [19].
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It is noted, [19], that for large distances, i.e., kr À 1, the spherical
Hankel functions behave as

inhn(kr) ∼=
eikr

ikr
= h0(kr) (B6)

Consequently

inMnm(r) ∼= h0(kr)Cm
n (r̂), in−1Nnm(r) ∼= h0(kr)Bm

n (r̂) (B7)

and it is noted that for large distances the wave approaches a plane
wave and the longitudinal wave functions Pm

n (r̂) can be neglected.
Hence in principle, arbitrary radiation patterns

g(r̂) =
∞∑

n=1

n∑

m=−n

[cn,mCm
n (r̂) + bn,mBm

n (r̂)] , r̂ = r̂(θ, ϕ) (B8)

can be expressed in terms of the vector spherical harmonics functions.
The coefficients cn,m, bn,m can be retrieved from an arbitrary function
g(r̂), e.g., given as experimental data, by exploiting the spatial
and functional orthogonality properties (B4), and from this the
corresponding full wave solution (B1) may be reconstructed.

For completeness it is noted that (B8) can be augmented to include
longitudinal functions as well

g(r̂) =
∞∑

n=1

n∑

m=−n

[cn,mCm
n (r̂) + bn,mBm

n (r̂) + pn,mPm
n (r̂)] (B9)

and from the orthogonality relations (B4)

∫
dΩ

[
C−m

n ,B−m
n , P−m

n

]
·g(r̂)= (−1)m4π

n(n + 1)

2n + 1

[
cnm, bnm,

pnm

n(n +1)

]

(B10)
where for brevity (B10) includes the three formulas in an obvious
manner.

Finally it is noted that a plane wave representation for arbitrary
distances is available, e.g., see [19–23]

E(r) = E0e
−iωt 1

2π

∫
dΩ(p̂)eikp̂·rg(p̂)

∼= E0e
−iωth0(kr)g(r̂)

∫
dΩ(p̂) =

π∫

−π

dϕp

(π/2)−i∞∫

0

dθp sin θp

(B11)
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where the integration is carried out on the indicated contours and
involves waves propagating in complex directions. Noteworthy is
the fact that for isotropic media, all the vector spherical harmonics
appearing under the integral sign in (B11), are transverse with
respect to the direction of propagation p̂. However the corresponding
vector spherical waves (B1) involve the longitudinal vector spherical
harmonics Pm

n (r̂) = r̂Y m
n (r̂). This is not surprising, considering the

fact that the field (B1) describes a general wave field, which is not
a plane wave, and only for large distances, according to (B7), it
asymptotically becomes a quasi plane wave, and the longitudinal waves
associated with Pm

n (r̂) do not feature. For completeness is it noted that
if longitudinal harmonics Pm

n (r̂) are included in (B11), they give rise
to longitudinal waves

Lnm(r) = [∂krhn(kr)]Pm
n (r̂) + [hn(kr)/kr]Bm

n (r̂) (B12)

By inspection of (B3) it is clear that Mnm·Nnm(r) = Mnm·Lnm(r) = 0
are spatially orthogonal, but Nnm · Lnm(r) 6= 0 are not.
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