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1. INTRODUCTION

Recently, it has been realized that two classes of ultra-wide-band
pulses, specifically wave solutions based on focus wave modes [1–3]
and X-waves [4–6], have similar spectral attributes. As such, we re-
gard these two groups of pulsed waves as subdivisions of a larger class
of solutions; namely, localized waves (LW) [7, 8]. Localized waves have
been studied extensively during the past decade. Schemes to generate
acoustical and optical LWs have been proposed and tested experimen-
tally [9–11]. Furthermore, investigations concerned with their use in
high-resolution imaging [12] and target identification [13] have demon-
strated certain advantages for LWs over other pulses. Because of their
large focusing depths and ultra-wide-band spectra, LWs offer greater
utility in detecting objects buried at different depths and in identify-
ing wide ranges of parameters characterizing detected targets [13]. In
such applications, one expects electromagnetic localized waves to be
transmitted from one medium to another. It is, therefore, important
to study the details of a canonical problem involving the reflection
and transmission of a localized wave obliquely incident on a planar
interface separating two electrically different materials. This problem
has been investigated previously in three different papers [14–16]. In
the first two studies, the authors used a two-dimensional variation of
Brittingham’s FWM solution. Hillion argued that FWMs are only
transmitted across a discontinuity surface if they are normally inci-
dent on that surface, while for oblique incidence only reflection takes
place [14]. Furthermore, he demonstrated that for normal incidence
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the transmitted, reflected and incident fields have LW structures. Don-
nelly and Power, on the other hand, proved that for oblique incidence
the reflected waveform has a LW structure while the transmitted field
does not [15]. In the third paper, the authors investigated the case of
a three-dimensional acoustical X-wave. They demonstrated that the
transmitted field loses its LW structure; however, it stays localized for
a certain distance before it starts disintegrating [16]. Furthermore,
they were able to deduce an expression for the dispersion-free range
and confirm numerically that such an estimate is consistent with the
decay pattern of the transmitted field.

In this work, we extend our previous study to the case of a three-
dimensional electromagnetic X-wave incident on an interface separat-
ing two electrically different media. We show that for oblique incidence
the reflected X-wave has a LW structure. We also provide an expla-
nation for the dispersion of the transmitted field. This explanation
is based on a spectral analysis that leads to a representation involv-
ing an integration of an angular distribution of azimuthally dependent
elementary pulses. For the incident and reflected X-waves, all the
azimuthally dependent pulses travel at the same speed and add up co-
herently at any observation point to synthesize a diffraction-free LW
pulse. In contradistinction, the transmitted azimuthally dependent
pulses travel at different speeds. The integration of these dispersed
pulses results in a wave field having an axial width that increases with
distance from the interface. This causes the central part of the trans-
mitted pulse to become longer, and the amplitude of its peak to de-
crease with distance. This idea is consistent with the ray-theoretic
explanation provided in Ref. 17.

The incident LW pulse is chosen to be a three-dimensional X-wave
because it is mathematically easier to manipulate than a three-
dimensional FWM pulse. This is the case because the wave vectors
of the X-wave lie on a conic surface whose apex angle is a parameter
appearing explicitly in the mathematical expression representing the
X-wave solution [17–19]. On the other hand, the components of the
FWM field form a weighted distribution over an infinite number of
uniaxial cones [20]. The apex angles can take any values between 0
to π ; therefore, acausal incoming components contribute to the total
field. Causally, it is necessary to deal with fields traveling only in one
direction. In previous studies, it has been shown how to choose the
parameters entering into the FWM solution in order to construct a LW
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field whose components are mostly traveling from one hemisphere to
the other [3, 20, 21]. This is achieved by tweaking the parameters ap-
pearing in the FWM solution so that the wave vectors defined on cones
having angles π/2 to π have larger spectral amplitudes (weights) than
those having angles 0 to π/2 . The latter acausal components become
negligible and can be eliminated without affecting the shape or the
localized character of the propagating wave. In the interface problem,
one has always to keep track of a basic fact; namely, the identification of
the side of the separating surface from which the wave components are
incident. This becomes a crucial issue for an obliquely incident FWM
pulse because the common axis of the cones, on which the wave vectors
are distributed, is tilted with respect to the normal to the separating
surface. Thus, we should be watchful for the possibility of having com-
ponents of relatively large spectral amplitudes arriving from the lower
side of the interface. This is a senseless situation and can be a source
of great confusion and can lead to incorrect conclusions.

The plan of this work is to deduce spectral superpositions repre-
senting the reflected and transmitted fields resulting from an X-wave
incident on an air-dielectric interface. This is done in Sec. 2. Starting
with the Fourier composition of the incident X-wave, the corresponding
Fourier superpositions of the reflected and transmitted fields are de-
duced. The resulting expressions for the various field components are
then transformed into angular superpositions over azimuthally depen-
dent pulses. The latter are used in evaluating numerically the different
field components and determining the polarization of the transmit-
ted field. Numerical calculations are discussed in Sec. 3, where it is
shown that the reflected field does not lose its LW properties, while
the transmitted field does. Factors affecting the disintegration of the
transmitted pulse are identified and their effect on the dispersion-free
range of the transmitted field is pointed out. In Sec. 4, we provide
concluding remarks and discuss possible future developments.

2. THE SPECTRAL COMPOSITION OF THE INCIDENT,
REFLECTED AND TRANSMITTED FIELDS

The X-wave field is composed of plane waves characterized by wave
vectors lying on a conical surface defined in momentum space by the
apex angle θk = ξ [17–19]. For oblique incidence, the spectral cone
[cf. Fig. 1 in Ref. 17] must be rotated by an angle equal to the angle
of incidence. Following a procedure introduced for acoustical X-waves
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incident on a discontinuity surface [16], we transform the Fourier spec-
tral superposition of the electromagnetic X-wave into an azimuthally
dependent angular representation [cf. Eq. (11) in Ref. 17]. Such an
azimuthal angular superposition has proved to be very effective in cal-
culating the amplitudes of the reflected and transmitted acoustical
fields [16].

2.1 Spectral Composition of a Normally Incident TE Electro-
magnetic X-wave

Consider a TE electromagnetic X-wave traveling in the positive z-
direction incident normally at the interface (z = 0) separating two
electrically distinct media. In particular, we assume that the normally
incident field is circularly polarized, i.e., the electric field component
is in the direction of the vector �uφ . A spatio-temporal representation
of such a field can be written as a four-fold Fourier superposition, viz.,

�E(�r, t) =
∫ ∞

0
d(ω/c1)

∫
R3

d3�keiωte−i�k·�rẼφ

(
�k, ω/c1

)
�uφ

(
�k, (ω/c1)

)

· δ
(
k2

x + k2
y + k2

z − (ω/c1)2
)
, (1)

where c1 denotes the phase speed of electromagnetic waves in the
region z < 0 and

Ẽφ

(
�k, (ω/c1)

)
=A

(
�k, (ω/c1)

)
/π, �uφ = ((−ky/χ)�ux + (kx/χ)�uy) ,

χ =
√

k2
x + k2

y.

In this work, we choose the real part of the complex integration given
in Eq. (1) to represent the electric field. This choice applies to the
incident, reflected and transmitted fields. To obtain an X-wave-type
solution, we choose:

A
(
�k, (ω/c1)

)
= F

(
�k, (ω/c1)

)
δ (kz − (ω/c1) cos ξ) , 0 ≤ ξ < π/2.

It follows, then, that

�E(�r, t) = (1/π)
∫ ∞

0
d(ω/c1)

∫
R3

d3�keiωte−i�k·�rF
(
�k, (ω/c1)

)

· δ (kz − (ω/c1) cos ξ) (−(ky/χ)�ux + (kx/χ)�uy)
· δ

(
k2

x + k2
y + k2

z − (ω/c1)2
)
. (2)
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We introduce, next, polar coordinates in wavenumber space by means
of the relations kx = χ cos φ and ky = χ sinφ . After integrating over
kz , Eq. (2) assumes the form

�E(x, y,z, t) = (1/π)
∫ ∞

0
d(ω/c1)

∫ 2π

0
dφ

∫ ∞

0
dχχeiωte−i(χx cos φ)e−i(χy sin φ)

· e−i(ω/c1)z cos ξF ((ω/c1), χ, φ)�se(φ)δ
(
χ2 − (ω/c1)2 sin2 ξ

)
, (3)

where
�se(φ) = (− sinφ�ux + cos φ�uy) .

Integrating over χ , we obtain

�E(x, y, z, t) =(1/2π)
∫ ∞

0
d(ω/c1)

∫ 2π

0
dφeiωte−i(ω/c1) sin ξ(x cos φ+y sin φ)

· e−i(ω/c1)z cos ξF̃ ((ω/c1), φ)�se(φ). (4)

Choosing
F̃ ((ω/c1), φ) = ie−(ω/c1)af(φ), a > 0, (5)

we get

�E(x, y, z, t) =(i/2π)
∫ 2π

0
dφ

∫ ∞

0
d(ω/c1)e−i(ω/c1)(z cos ξ−c1t)

· e−i(ω/c1) sin ξ(x cos φ+y sin φ)e−(ω/c1)af(φ)�se(φ).

The integration over (ω/c) results in the expression

�E(x, y, z, t) =
i

2π

∫ 2π

0
dφ

f(φ)�se(φ)
(a + i(z cos ξ − c1t) + i sin ξ(x cos φ + y sinφ))

.

(6)
It is clear that the choice of f(φ) affects the polarization of the re-
sulting field. The simplest expression follows from choosing f(φ) = 1 .
A scalar-valued version of the azimuthal angular superposition given
in Eq. (6) has been used previously to determine the properties of the
reflected and transmitted fields due to an acoustic X-wave incident on
a surface of discontinuity separating two media [16].

An azimuthal angular superposition for the magnetic field intensity
can be obtained in an analogous fashion. It is given explicitly as follows:

�H(x, y, z, t) =
i

2π

√
εrε0

µ0

∫ 2π

0
dφ

× f(φ) {�γ(φ) ×�se(φ)}
(a + i(z cos ξ − c1t) + i sin ξ(x cos φ + y sinφ))

. (7)
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Here c1 =
(
c0/

√
εr

)
, where c0 denotes the speed of light in vacuum

and εr the relative permittivity of the medium in region z < 0 and
the magnetic permeability is assumed to be that of vacuum. The φ-
dependent unit vector associated with each propagation vector �k is
denoted by �γ(φ) [cf. Appendix B]. For normal incidence, we have

�γi(φ) = sin ξ cos φ�ux + sin ξ sin φ�uy + cos ξ�uz.

In this case, the magnetic field intensity given in Eq. (7) simplifies to

�H(x, y, z, t) =
i

2π

√
εrε0

µ0

∫ 2π

0
dφ

× f(φ)�sh(φ)
(a + i(z cos ξ − c1t) + i sin ξ(x cos φ + y sinφ))

. (8)

where
�sh(φ) = sin ξ�uz − cos ξ (cos φ�ux + sinφ�uy) .

It is seen from this expression that the magnetic field �H(�r, t) has a
transverse component parallel to the surface of discontinuity given by

�H⊥(x, y, z, t) = − i

2π

√
εrε0

µ0

∫ 2π

0
dφf(φ)

× cos ξ (cos φux + sinφ�uy)
(a + i(z cos ξ − c1t) + i sin ξ(x cos φ + y sinφ))

, (9a)

and a longitudinal component normal to the surface of discontinuity
given as

�H‖(x, y, z, t) =
i

2π

√
εrε0

µ0

∫ 2π

0
dφf(φ)

× sin ξ�uz

(a + i(z cos ξ − c1t) + i sin ξ(x cos φ + y sinφ))
. (9b)

In the following subsections, we shall deal only with the electric field
components bearing in mind that the magnetic components can be
calculated using the procedure described in the preceding paragraphs.

The space-time dependence of the electromagnetic field components
in Eqs. (6) and (9a, b) is determined by the kernel

K(x, y, z, t;φ) = (a + i(z cos ξ − c1t) + i sin ξ(x cos φ + y sinφ))−1

(10)



220 Shaarawi et al.

that appears in the integrands of the three expressions. This kernel
represents various azimuthally dependent pulses arriving simultane-
ously at a certain point, thus contributing coherently to the amplitude
of a nondispersive X-shaped LW. One can, thus, conjecture that the
existence of such kernel (or similar ones resulting from simple coordi-
nate rotations) implies that the field has a nondispersive LW structure.
This could be a useful measure in determining wether the reflected and
transmitted fields retain the LW character of the incident X-wave.

2.2 The Obliquely Incident TE X-Wave

For an obliquely incident X-wave, having its axis of propagation
tilted at an angle α1 to the z-axis (the normal to the interface),
the �k and �s vectors should be rotated as specified in Appendix A.
Consequently, the electric field intensity acquires the form

�E(i)(�r, t) =(i/2π)
∫ ∞

0
d(ω/c1)

·
∫ 2π

0
dφeiωte−i(k′

xx+k′
yy+k′

zz)f(φ)e−(ω/c1)a�s(i), (11)

where

�s(i) =
1√

k′
x
2 +

(
k′

y cos α1 + k′
z sinα1

)2

·
{
−

(
k′

y cos α1 + k′
z sinα1

)
�ux + k′

x cos α1�uy + k′
x sinα1�uz

}
. (12)

The wave vector components associated with the obliquely incident X-
wave, viz.,

(
k′

x, k′
y, k

′
z

)
= (kxinc, kyinc, kzinc) are given in Eqs. (B1–3) of

Appendix B. The substitution of the above expressions for k′
x, k′

y and
k′

z into (12) yields an alternative expression for �s(i) which depends
solely on the angular variables; specifically,

�s(i) = − sinφ�ux + sinφ cos α1�uy + cos φ sinα1�uz. (13)

It is important to note that the polarization vector �s(i) is independent
of (ω/c1) . The integration over (ω/c1) in Eq. (11) can be easily
evaluated yielding
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�E(i)(�r, t)=
i

2π

∫ 2π

0
dφ

× f(φ) (− sinφ�ux + cos φ cos α1�uy + cos φ sinα1�uz)(
a + i((z cos α1 − y sinα1) cos ξ1 − c1t)

+ ix sin ξ1 cos φ + i sin ξ1 sinφ(y cos α1 + z sinα1)

).

(14)

The fact that the polarization vector is independent of (ω/c1) greatly
simplifies our analysis. In later sections, we shall use the same prop-
erty to calculate the reflected and transmitted coefficients given that
the Fresnel coefficients of the reflected and transmitted fields are also
independent of (ω/c1) . To calculate the reflected and transmitted
fields, the obliquely incident X-wave should be split into spectral com-
ponents that are parallel and normal to the plane of incidence. This
requires Eq. (14) to be rewritten in a different fashion. Specifically,
the integration in Eq. (14) should be divided into two parts, viz.,

�E(i)(�r, t) =
i

2π

∫ 2π

0
dφf(φ)K(i)(x, y, z, t;φ)�s(i)

⊥ (φ)

+
i

2π

∫ 2π

0
dφf(φ)K(i)(x, y, z, t;φ)�s(i)

‖ (φ), (15)

where the kernel of the obliquely incident field is given as

K(i)(x, y, z, t;φ)=(a + i((z cos α1 − y sinα1) cos ξ1 − c1t)
+ ix sin ξ1 cos φ+ i sin ξ1 sinφ(y cos α1+ z sinα1))−1.

(16)

The procedure described in Appendix A gives the parallel and normal
components of the polarization vector. Substituting the components of
the wave vector

(
k′

x, k′
y, k

′
z

)
= (kxinc, kyinc, kzinc) given in Eqs. (B1–3),

we have

�s
(i)
⊥ =

γy (γy cos α1 + γz sinα1) + γ2
x cos α1(

γ2
x+ γ2

y

)√
γ2

x+ (γy cos α1+ γz sin α1)
2
{−γy�ux + γx�uy}. (17a)

�s
(i)
‖ =

γx sinα1√
γ2

x+(γy cos α1+γz sinα1)
2

{
−γz(

γ2
x+γ2

y

)(γx�ux+γy�uy)+�uz

}
.(17b)



222 Shaarawi et al.

Using Eq. (15), the obliquely incident magnetic field intensity can be
calculated as follows

�H(i)(�r, t) =
i

2π

√
ε1ε0

µ0

∫ 2π

0
dφf(φ)K(i)(x, y, z, t;φ)

{
�γ(φ) ×�s

(i)
⊥ (φ)

}

+
i

2π

√
ε1ε0

µ0

∫ 2π

0
dφf(φ)K(i)(x, y, z, t;φ)

{
�γ(φ) ×�s

(i)
‖ (φ)

}
. (18)

2.3 The Reflected and Transmitted Wave Fields

To evaluate the reflected and transmitted field components, one can
apply the Fresnel formulas for the electric field [22], viz.,

R‖ =
η1 cos θk1 − η2 cos θk2

η1 cos θk1 + η2 cos θk2
, (19a)

R⊥ =
η2 cos θk1 − η1 cos θk2

η2 cos θk1 + η1 cos θk2
. (19b)

T‖ =
2η2 cos θk1

η1 cos θk1 + η2 cos θk2
, (20a)

T⊥ =
2η2 cos θk1

η2 cos θk1 + η1 cos θk2
. (20b)

Here, η1 =
√

µ0µ1/ε0ε1 and η2 =
√

ε0ε2/µ0µ2 are the intrinsic
impedances of the two media. The spectral angles θk1 and θk2 can
be evaluated using Eq. (18a) in Ref. 17. Using the notation introduced
in Appendix B, we have

γz(φ) = cos θk1 = sin ξ1 sinα1 sinφ + cos ξ1 cos α

and

γ̃z(φ)= (c1/c2) cos θk2

= (c1/c2)
√

1−(c2/c1)2+(c2/c1)2(sin ξ1 sinα1 sinφ+cos ξ1 cos α)2.

The Fresnel formulas for nonmagnetic media acquire the following an-
gular dependent forms

R‖(φ) =
γz(φ) − (c2/c1)2γ̃z(φ)
γz(φ) + (c2/c1)2γ̃z(φ)

, (21a)
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R⊥(φ) =
γz(φ) − γ̃z(φ)
γz(φ) + γ̃z(φ)

. (21b)

T‖(φ) =
2(c2/c1)γz(φ)

γz(φ) + (c2/c1)2γ̃z(φ)
, (22a)

T⊥(φ) =
2γz(φ)

γz(φ) + γ̃z(φ)
. (22b)

To calculate the reflected field, we need to determine the reflected
spectral amplitude for each azimuthal pulsed component. Multiply-
ing the electric field components (normal and parallel to the plane of
incidence) by the appropriate Fresnel coefficients yields

�E(r)(�r, t) =
i

2π

∫ 2π

0
dφf(φ)K(r)(x, y, z, t;φ)�s(r)

⊥ (φ)R⊥(φ)

+
i

2π

∫ 2π

0
dφf(φ)K(r)(x, y, z, t;φ)�s(r)

‖ (φ)R‖(φ), (23)

where the kernel of the reflected field, viz.,

K(r)(x, y, z, t;φ) = (a− i((z cos α1+ y sinα1) cos ξ1+ c1t)
+ix sin ξ1 cos φ+i sin ξ1 sinφ(y cos α1−z sinα1))−1(24)

follows from an integration over (ω/c1) in an expression analogous
to that in Eq. (11). For the reflected field one has to substitute(
k′

x, k′
y, k

′
z

)
= (kxref , kyref , kzref ) given in Eqs. (B4–6). The paral-

lel and normal components of the polarization vector of the reflected
electric field intensity are deduced using Eqs. (A11–12) and (B4–6).
They are given explicitly as follows:

�s
(r)
⊥ =

γy (−γy cos α1 − γz sinα1) − γ2
x cos α1(

γ2
x + γ2

y

) √
γ2

x + (−γy cos α1 − γz sinα1)
2
{−γy�ux + γx�uy}, (25)

�s
(r)
‖ =

γx sinα1√
γ2

x+ (−γy cos α1− γz sinα1)
2

{
γz(

γ2
x+γ2

y

) (γx�ux+γy�uy)+�uz

}
.

(26)

In these two expressions, we have applied cos α1 → − cos α1 (cos(π −
α1) = − cos α1 and sin(π − α1) = sinα1) to the expressions given in
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(A11) and (A12). As discussed in Appendix B, such a transformation
is necessary for constructing a reflected cone satisfying the reflection
condition θk1 = θk2.

The reflected magnetic field intensity can be calculated from Eq.
(23). It assumes the following angular superposition form:

�H(r)(�r, t)=
i

2π

√
ε1ε0

µ0

∫ 2π

0
dφf(φ)K(r)(x, y, z, t;φ)

{
�γ(φ)×�s

(r)
⊥ (φ)

}
R⊥(φ)

+
i

2π

√
ε1ε0

µ0

∫ 2π

0
dφf(φ)K(r)(x, y, z, t;φ)

{
�γ(φ)×�s

(r)
‖ (φ)

}
R‖(φ).

(27)

The transmitted electric field intensity is calculated by applying a sim-
ilar procedure. Starting with the parallel and perpendicular compo-
nents of the incident field, we multiply the azimuthal angular com-
ponents by the appropriate Fresnel coefficient and substitute the ex-
pressions for k′

z = kztrans, k′
y = kytrans , and k′

x = kxtrans given in
Appendix B. The resulting transmitted electric field is equal to

�E(t)(�r, t) =
i

2π

∫ 2π

0
dφf(φ)K(t)(x, y, z, t;φ)�s(t)

⊥ (φ)T⊥(φ)

+
i

2π

∫ 2π

0
dφf(φ)K(t)(x, y, z, t;φ)�s(t)

‖ (φ)T‖(φ). (28)

Here, the kernel of the transmitted field is deduced by carrying out
Fourier integrations appearing in an expression analogous to Eq. (11).
The function K(t)(x, y, z, t;φ) resulting from the integration over
(ω/c1) is given as

K(t)(x, y, z, t;φ) = (a + i(zγ̃z(φ) − c1t) + ix sin ξ1 cos φ + iyγy(φ))−1 .
(29)

In Appendix A, Eqs. (A11) and (A12) give the parallel and normal
parts of the polarization vector for the transmitted field. Substituting
the components of the wave vector

(
k′

x, k′
y, k

′
z

)
= (kxinc, kyinc, kzinc)

given in Eqs. (B7, 8) and (B12), we obtain

�s
(t)
⊥ =

γy (γy cos α1 + γ̃z sinα1) + γ2
x cos α1(

γ2
x + γ2

y

) √
γ2

x + (γy cos α1 + γ̃z sin α1)
2
{−γy�ux + γx�uy}, (30a)
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�s
(t)
‖ =

γx sinα1√
γ2

x+ (γy cos α1+ γ̃z sinα1)
2

{
−γ̃z(

γ2
x+γ2

y

) (γx�ux+γy�uy)+�uz

}
.

(30b)

The transmitted magnetic field intensity can be calculated using the
following angular superposition:

�H(t)(�r, t)=
i

2π

√
ε2ε0

µ0

∫ 2π

0
dφf(φ)K(t)(x, y, z, t;φ)

{
�γ(φ)×�s

(t)
⊥ (φ)

}
T⊥(φ)

+
i

2π

√
ε2ε0

µ0

∫ 2π

0
dφf(φ)K(t)(x, y, z, t;φ)

{
�γ(φ)×�s

(t)
‖ (φ)

}
T‖(φ).

(31)

Notice that in Eqs. (29–31), the space and time dependence of the
transmitted field is due to an angular integration of a kernel that dif-
fers from the one given in Eq. (10). The z-components of the velocities
of the azimuthal pulses depend on the angular variable φ . The various
pulsed components traveling with different velocities cause the trans-
mitted field to disperse. Once it goes through the interface, the trans-
mitted field is initially localized. When the dispersion of the pulsed
components spans a distance comparable to a′ = a(c2/c1)/ cos ξ2 the
transmitted pulse starts disintegrating. Consequently, pulses having
large a values or small ξ2 angles propagate for longer distances before
they start dispersing. These results have been confirmed numerically
for acoustic X-waves [16] and will be examined in the next section for
electromagnetic X-waves.

2.4 The Transmitted Electric Field Intensity for Normal
Incidence

Before considering specific numerical examples, we examine the case
of normal incidence for which α1 = 0 . In this limit the quantity γ̃z(φ)
reduces to (c1/c2) cos ξ2 . As a consequence, the transmitted electric
field given in Eq. (28) reduces to

�E(t)(x, y, z, t) =
i

2π

∫ 2π

0
dφ

× (c2/c1)f(φ) (− sinφ�ux + cos φ�uy)
(a(c2/c1)+ i(z cos ξ2− c2t)+ i sin ξ2(x cos φ+ y sinφ))
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× 2 cos ξ1

cos ξ1 + (c1/c2) cos ξ2
. (32)

Notice that contributions from the parallel components have vanished.
The integration over φ depends on (x, y, z, t) through a kernel similar
to the one given in Eq. (10). Therefore, the transmitted field exhibits
a LW structure. Its axial width along the direction of propagation
equals a′ = a(c2/c1)/ cos ξ2 , which is the same quantity deduced using
the ray-theoretic technique used in Ref. 17. Since normally incident X-
waves retain their LW structure as they are transmitted into the second
medium, one expects that X-waves obliquely incident at small angles
will travel for long distances without significant dispersion. It has
been demonstrated that scalar X-waves incident at larger inclination
angles result in transmitted fields that disperse at shorter distances.
A detailed study of this behavior is considered in the next section for
electromagnetic X-waves.

3. NUMERICAL EXAMPLES

In this section, we examine the behavior of the reflected and transmit-
ted fields due to an X-wave obliquely incident on an interface separating
two electrically different media. The incident TE X-wave is character-
ized by the parameters ξ1 = 2◦, a = 0.01 m and f(φ) = 1 . The axis
of the X-wave is inclined at an angle α1 = 5◦ relatively to the nor-
mal to the interface. The amplitude of the incident pulse is calculated
at c1t = −10 m using Eqs. (15–17). Surface and density plots of the
amplitude of the pulse are shown in Fig. 1 as function of the distance
from the interface z and the transverse radial distance from the axis
of the pulse ρ . Denoting the angular rotation in the transverse plane
by ϑ we have x = ρ cos ϑ and y′ = ρ sinϑ . Surface plots for various
ϑ angles represent different sections of the pulse. The incident X-wave
displayed in Fig. 1 corresponds to a section characterized by ϑ = 0 .
Since the incident pulse introduced in Sec. 2 is rotationally invari-
ant around the axis of propagation, we expect that its shape will not
change as ϑ is varied. This can be illustrated by looking at different
transverse sections evaluated at z′ cos ξ1 = c1t . The amplitude of the
electric field is plotted in Fig. 2 for different ϑ values. One can see that∣∣E(i)(ρ, ϑ, z′ cos ξ1 = c1t)

∣∣ evaluated at c1t = −10 m is independent of
ϑ . The transverse character of the incident X-wave implies that con-
tributions from different components to the total field vary with ϑ .
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(a)

(b)

Figure 1. Magnitude of the electric field of the incident X-wave having
a = 0.01 m and ξ1 = 2◦ evaluated at c1t = −10 m. (a) Density plot
and (b) Surface plot.
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Figure 2. Surface plot of a transverse section of the incident field.
The section is taken at z′ cos ξ1 = c1t = −10 m. The incident field has
a = 0.01 m and ξ1 = 2◦ . The amplitude is plotted as a function of ρ
and ϑ.

This is illustrated in Fig. 3 by displaying the angular dependence of
the three components of the incident X-wave at z′ cos ξ1 = c1t.

As the incident X-wave approaches the interface situated at z = 0 ,
its front arms are reflected first. The peaked portion of the pulse ar-
rives later and is reflected at an inclination angle equal to αr = α1 .
This behavior is depicted in Fig. 4 that displays a time sequence of
the X-wave pulse as it approaches the interface and gets reflected. The
refractive indices of the two media are chosen so that (c1/c2) = 1.5 .
Note that the shape of the reflected field is quite different from that of
the incident one because of the varying contributions from the paral-
lel and normal polarization components to the total field. Unlike the
incident field, the reflected one is not rotationally invariant. To illus-
trate this point, in Fig. 5 we display density plots of sections of the
reflected field at different ϑ values. Surface plots of the three sections
at ϑ = 0, π/4 , and π/2 are given in Fig. 6. These figures show that
the shape of the reflected field depends on the relative contribution
of the normal and parallel polarization components at the various ϑ
sections. To emphasize this point, in Fig. 7 we provide surface plots
of the transverse reflected field at z′ cos ξ1 = c1t = 10 m as a function
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(a)

(b)

(c)

Figure 3. Surface plots of transverse sections of the three components
of the incident field. The sections are taken at z′ cos ξ1 = c1t = −10 m.
The incident field has a = 0.01 m and ξ1 = 2◦.
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Figure 4. Density plot showing a time sequence of the incidence and
reflection of the X-wave shown in Fig. 1. The dielectric medium is
chosen such that (c1/c2) = 1.5 and the angle of inclination of the
incident field α1 = 5◦.
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Figure 5. Density plots of the reflected electric field evaluated at
c1t = 10 m for ϑ = 0, ϑ = π/4 and ϑ = π/2 . The figure illustrates
the change in the shape of the reflected field evaluated at different
longitudinal sections.
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(a)

(b)

(c)

Figure 6. Surface plots of the reflected electric field evaluated at c1t =
10 m for (a) ϑ = π/2 , (b) ϑ = π/4 and (c) ϑ = 0.
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(a)

(b)

Figure 7. Surface plot of a transverse section of the reflected field.
The section is taken at z′ cos ξ1 = c1t = 10 m. The incident field has
a = 0.01 m and ξ1 = 2◦ . The amplitude is plotted as a function of ρ
and ϑ for (a) α1 = 5◦ and (b) α1 = 30◦.
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of ρ and ϑ . Unlike the incident field [cf. Fig. 2], the angular depen-
dence of the amplitude of the reflected field is irregular indicating that
the electric field changes significantly with ϑ . A comparison of Figs.
7a and 7b shows that the irregular dependence on ϑ becomes more
pronounced as the angle of incidence is increased from α1 = 5◦ to
α1 = 30◦.

Next, we consider the behavior of the transmitted field. It has been
explained in Ref. [16] that the transmitted field loses its LW structure
because the wave vectors defining its spectral components do not lie
on a conic surface. Alternatively, one may argue that the kernel ap-
pearing in the azimuthal angular superposition given in Eqs. (28) and
(29) acquires speeds that are φ-dependent. The transmitted field at
any point inside the second medium is formed of azimuthally depen-
dent pulses traveling at different speeds. As a result, the transmitted
field disperses with distance. An estimate for the dispersion rate of
the transmitted field has been deduced for acoustic X-waves [16]. The
analysis introduced in that work was based on the assumption that
close to the surface of discontinuity the wave vectors of the transmit-
ted spectral components form an approximate conical surface. The
inclination angle of the axis of this surface is assumed to equal α2 and
its apex angle ξ2 . Consider the schematic diagram shown in Fig. 8.
It represents a section taken at x = 0 of the incident, reflected and
transmitted (approximate) cones. Application of Snell’s law to the rays
yields the following two equations:

(1/c1) sin(α1 ± ξ1) = (1/c2) sin(α2 ± ξ2).

The combination of these two equations results in the expressions

(1/c1) sin ξ1 cos α1 = (1/c2) sin ξ2 cos α2, (33)
(1/c1) cos ξ1 sinα1 = (1/c2) cos ξ2 sinα2. (34)

We solve for ξ2 after eliminating the dependence on α2 to obtain

cos ξ2 =
√

−(B/2) +
√

(B/2)2 − C, (35)

where B =
(
(c2/c1)2 sin2 ξ1 cos2 α1 − (c2/c1)2 cos2 ξ1 sin2 α1 − 1

)
and

C = (c2/c1)2 cos2 ξ1 sin2 α1 . After evaluating the apex angle ξ2 , the
inclination angle α2 can be calculated using either Eq. (33) or (34).
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Figure 8. Longitudinal sections of the spectral cones of the incident,
reflected and transmitted fields. The surface of discontinuity between
the two media is situated at the z = 0 plane.

These values are then used to estimate the deviation of the square
root appearing in γ̃z(φ) from the γz(φ)(c1/c2) term associated with
a rotated z variable appearing in an exact X-wave tilted in the sec-
ond medium at an angle α2 and characterized by the angle ξ2 . The
resulting deviation ∆(φ) is equal to

∆(φ) = γ̃(z) − (c1/c2)γ(z)

=
√

(c1/c2)2 − 1 + (sin ξ1 sinα1 sinφ + cos ξ1 cos α1)
2

− (c1/c2) (sin ξ2 sinα2 sinφ + cos ξ2 cos α2) . (36)

For short distances from the interface, the condition z∆(φ) � a is
satisfied for all values of ∆(φ) . Hence, the transmitted field remains
localized until it reaches the dispersion limit

zd =
a∣∣∆(φ)

∣∣ . (37)

Here, ∆(φ) is the average deviation over the range 0 ≤ φ < 2π.
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Figure 9. Density plot showing a time sequence of the transmitted
field due to the X-wave shown in Fig. 1. The dielectric medium is cho-
sen such that (c1/c2) = 1.5 and the angle of inclination of the incident
field α1 = 5◦ . The pulse does not disperse for several kilometers from
the interface.

In Fig. 9, we present density plots of the transmitted field at c1t =
10, 3000 and 30000 m. The incident X-wave has the same charac-
teristics as the one displayed in Fig. 1. It is clear that the transmit-
ted pulse stays localized for a long distance and starts to disperse at
c1t = 30000 m. The surface plots provided in Fig. 10 show that the



Reflection and transmission of X-waves from a planar interface 237

(a)

(b)

Figure 10. Surface plots of the transmitted field evaluated at (a)
c1t = 10 m and (b) c1t = 30 km.

pulse stays localized for distances of order of 10 km. Even after 10
km, the dispersion of the pulse is very slow because of the small angle
of incidence α1 . To demonstrate the effect of increasing α1 , in Fig.
11a we provide a density plot of the transmitted field for α1 = 30◦

at c1t = 1000 m. In Fig. 11b, we display a surface plot of the same
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(a)

(b)

Figure 11. Magnitude of the transmitted electric field evaluated at
c1t = 1000 m. The transmitted field is due to an X-wave incident at
α1 = 30◦ and having a = 0.01 m and ξ1 = 2◦ . (a) Density plot and
(b) 3-D surface plot.

field. The two figures show that the transmitted field starts to disperse
at z = 600 m. Another factor that affects the dispersion of the trans-
mitted pulse is the parameter a that controls the axial and lateral
widths of the pulse and its frequency bandwidth [8]. The expression
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(a)

(b)

Figure 12. Magnitude of the transmitted electric field evaluated at
c1t = 3000 m. The transmitted field is due to an X-wave incident at
α1 = 5◦ and having a = 0.01 m and ξ1 = 8◦ . (a) Density plot and
(b) 3-D surface plot.

given in Eq. (37) indicates that the dispersion limit decreases as the
parameter a becomes smaller. The density plot in Fig. 12 supports
this conclusion showing that reducing a to 0.001 m causes the pulse
to disperse at c1t = 3000 m. It is important to note that both the
lateral and transverse widths of the pulse are reduced by a factor of
ten when compared to the pulse shown in Fig. 10b. The third factor
that affects the dispersion rate of the transmitted field is the axicon
angle ξ1 . In Fig. 13, we display the transmitted field resulting from an
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(a)

Figure 13. Magnitude of the transmitted electric field due to an X-
wave incident at α1 = 5◦ . The incident X-wave has a = 0.001 m and
ξ1 = 2◦ . (a) Density plot for c1t = 30 m and c1t = 2000 m, (b) 3-D
surface plot for c1t = 30 m and (c) 3-D surface plot for c1t = 2000 m.

incident X-wave having ξ1 = 8◦ . Plots for c1t = 30 and 2000 m are
provided. The figures show that dispersion becomes visible at a dis-
tance of 1336 m from the interface. Therefore, an increase in ξ1 causes
the transmitted field to disperse at shorter distances. Table 1 displays
values of zd calculated for the different parameter choices used in Figs.
10–13. The calculated zd values are approximately half the distances
used in the figures. We did not provide plots of the transmitted fields
at the respective zd distances because at those positions the pulses
are still localized. At zd , dispersion starts becoming effective but is
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(b)

(c)

Figure 13. Continued.
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not yet observable. The figures are plotted at approximately twice zd

to clearly show the dispersion of the transmitted field. Comparing the
values of zd in Table 1 to the decay of the pulses plotted in Figs.
10–13, we can conclude that the dispersion distance given in Eq. (37)
characterizes accurately the decay of the transmitted field.

Table 1.

ξ1 α1 (c1/c2) a (m) zd (m)

2◦ 5◦ 1.5 0.01 11600
2◦ 30◦ 1.5 0.01 297
2◦ 5◦ 1.5 0.001 1160
8◦ 5◦ 1.5 0.01 720

4. CONCLUSION

In this work, we have considered the reflection and transmission of
electromagnetic X-waves obliquely incident on a planar air-dielectric
interface. The analysis adopted has been based on a spectral decom-
position of the incident pulse into plane wave components specified by
wave vectors forming a conical surface. The boundary conditions at
the interface are satisfied by the individual plane waves that are repre-
sented in the form of an angular integration (synthesis) of azimuthally
dependent pulses. It has been shown that the incident and azimuthally
dependent pulses travel at the same speed and, consequently, add up
coherently at any observation point to form a LW pulse. In contradis-
tinction, the azimuthally dependent pulses associated with the trans-
mitted field travel at different speeds, thus causing the dispersion of
transmitted field. It has been shown that the localization range of the
transmitted field depends on the temporal frequency bandwidth, the
angle of inclination and the axicon angle of the incident X-wave pulse.
For normal incidence, the transmitted field retain its LW structure.
These results are is agreement with the geometric approach inferred
from the pulsed plane wave representation introduced in Ref. 17.

In previous investigations, the transmitted field has been shown to
lose the LW structure of the incident pulse [14, 15]. This may give
the wrong impression that the transmitted filed is not localized at
all. The present work demonstrates that the transmitted field stays
localized up to a distance that depends on the characteristics of the
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incident field. Furthermore, the analysis reveals that the transmitted
LW structure resulting from normal incidence changes continuously
into a progressively degenerate structure as the angle of incidence is
increased. This information is essential for practical applications that
make use of the localized character of the transmitted field, e.g., in
detection and identification of buried objects. The information should
be used in conjunction with the fact that finite-energy LWs have a
finite range of localization [8, 23, 24]. Thus, one should always be
able to determine which effect dominates in causing the decay of the
transmitted field; the diffraction effect due to the initial finite size of
the source or the dispersion effects described in this paper. Such an
assessment can be effected by comparing the estimate for the range of
localization zd given in Eq. (37) to formulas specifying the diffraction
lengths of LWs [8, 23, 24].

In summary, in his paper we have described a spectral technique
for evaluating the reflections and transmissions of electromagnetic X-
waves incident on a planar air-dielectric interface. We have provided a
full wave explanation of the dispersion of the transmitted fields. The
adopted analysis yields an estimate for the dispersion rate. Further-
more, it demonstrates the effects of polarization on the shaping of the
transmitted and reflected pulses. We would like to point out that our
investigation is not exhaustive. Some generalizations, e.g., the incor-
poration of multi-layered geometries and the possible identification of
the dielectric characteristics of the different layers, are discussed in Ref.
17. Further extensions are required when we take into consideration
loss and dispersion mechanisms of the second medium. In addition,
special attention should be given to the incorporation of evanescent
fields when incidence takes place from an optically slower medium to
a faster one. For acoustic X-waves, it has been shown that at near-
critical incidence the transmitted field becomes highly focused at short
distances from the interface [16].

APPENDIX A

The wave vectors associated with the spectral wave components of a
normally incident X-wave lie on a conical surface as shown in Fig. 1
of Ref. 17. The unit vector �s defines the polarization of each plane
wave component. For a normally incident X-wave, we choose �s = ûφ .
Superposition over such plane wave components gives an azimuthally
symmetric wave with Eφ, Hρ , and Hz electromagnetic components.
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For normal incidence, the wave vectors are defined as

�k = kx�ux + ky�uy + kz�uz. (A1)

The polarization vector associated with each wave vector is given by

�s = − (ky/χ)�ux + (kx/χ)�uy. (A2)

For oblique incidence, the spectral cone is rotated around the X-axis
through angle α1 . The wave vectors associated with the spectral plane
wave components are transformed so that �k′ = MT�k . Specifically, we
get,

�k′ = kx�ux +(ky cos α1 − kz sinα1)�uy +(ky sinα1 + kz cos α1)�uz. (A3)

To preserve the TE character of the incident field, the vector �s is also
rotated using the transformation �s′ = MT�s . This gives rise to the
following explicit expression for the polarization vector:

�s′ = − (ky/χ)�ux + (kx/χ) cos α1�uy + (kx/χ) sinα1�uz. (A4)

When the spectral cone is rotated, the polarization vector �s′ acquires
both parallel and normal components with respect to the plane of
incidence. Our aim in this appendix is to identify explicitly these
components and, hence, to use this information in calculating the re-
flected and transmitted fields. The reflected and transmitted fields
are calculated by carrying out Fourier integrations over �k′ . As a con-
sequence, we need to recalculate �s′⊥ and �s′‖ in terms of the com-

ponents of �k′ . The polarization unit vector given in Eq. (A4) can
be rewritten in terms of

(
k′

x, k′
y, k

′
z

)
after substituting kx = k′

x and
ky = k′

y cos α1 + k′
z sinα1 . This substitution yields

�s′ = −
((

k′
y/χ′) cos α1 +

(
k′

z/χ′) sinα1

)
�ux +

(
k′

x/χ′) cos α1�uy

+
(
k′

x/χ′) sinα1�uz, (A5)

where χ′ =
(
k′

x
2 +

(
k′

y cos α1 + k′
z sinα1

)2
)1/2

. The components of
�s′ along the z-axis and in the xy-plane are obtained from Eq. (A5);
specifically,

�s′z =
(
k′

x/χ′) sinα1�uz, (A6)
�s′xy = −

((
k′

y/χ′) cos α1 + (
(
k′

z/χ′) sinα1

)
�ux + (

(
k′

x/χ′) cos α1�uy.(A7)
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The plane of incidence is defined as the plane containing the two vectors
�k′ and �uz . Hence, the condition �s′⊥ ·�k′ = 0 should be satisfied, where

�s′⊥ = Q1�ux + Q2�uy.

This is equivalent to the constraint

Q1 = −Q2

(
k′

y/k′
x

)
.

The vector �s′⊥ can then be written as

�s′⊥ =
(
Q/χ′) {

−k′
y�ux + k′

x�uy

}
. (A8)

The parallel part of �s′ equals the difference between �s′xy and �s′⊥
added to �s′z . Specifically,

�s′‖ = − (1/χ′)
[(

k′
y cos α1 + k′

z sinα1 − Qk′
y

)
�ux

−
(
k′

x cos α1 − Qk′
x

)
�uy − k′

x sinα1�uz

]
. (A9)

The constant Q can be determined from the normalization condition,∣∣∣�s′‖
∣∣∣2+|�s′⊥|

2 = 1 . After some manipulations, we solve for the parameter
Q , to obtain

Q =
k′

y

(
k′

y cos α1 + k′
z sinα1

)
+ k′

x
2 cos α1(

k′
y
2 + k′

x
2
) . (A10)

The components of �s′ normal and parallel to the plane of incidence
can be written explicitly as

�s′⊥=
k′

y

(
k′

y cos α1 + k′
z sinα1

)
+ k′

x
2 cos α1(

k′
x
2+k′

y
2
) √

k′
x
2+

(
k′

y cos α1+k′
z sinα1

)2

{
−k′

y�ux+k′
x�uy

}
. (A11)

�s′‖=
k′

x sinα1√
k′

x
2+

(
k′

y cos α1+k′
z sinα1

)
2

{
−k′

z(
k′

x
2+k′

y
2
)(k′

x�ux+k′
y�uy

)
+�uz

}
.(A12)

APPENDIX B

Our aim in this appendix is to determine the components of the wave
vector �k associated with the spectral components of the reflected and
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transmitted X-wave fields. We assume that the surface of discontinuity
between the two media lies on the z = 0 plane. An X-wave is incident
from the negative z-hemisphere to the positive one along a propagation
axis lying in the x = 0 plane and titled at an angle α1 with the z-axis.
To determine the form of the reflected and transmitted wave vectors,
we apply the following rules to their components:
(1) kxref = kxinc, kyref = kyinc and kzref = −kzinc.
(2) kxtrans = kxinc, kytrans = kyinc and kztrans to be determined

using Snell’s law sin θk2 = (c2/c1) sin θk1.

For an obliquely incident field, the wave vector is given by �kinc =
(ω/c1)�γi , where �γi is a unit vector with components

γix = sin θk1 cos φk1 = sin ξ1 cos φ. (B1)
γiy = sin θk1 sinφk1 = sin ξ1 sinφ cos α1 − cos ξ1 sinα1. (B2)
γiz = cos θk1 = sin ξ1 sinφ sinα1 + cos ξ1 cos α. (B3)

These three relations are parametric equations describing the compo-
nents of a unit vector lying on a circular conic surface having an apex
angle ξ1 and rotated around the x-axis through an angle α1 . It will
be seen that the angular dependence of the components of the unit vec-
tors associated with the reflected and transmitted fields is analogous
to that given in Eqs. (B1–3). In the sequel, we shall use the simpler
notation γx = γix, γy = γiy and γz = γiz.

According to rule (1), the reflected wave vector can be written as
�kref = (ω/c1)�γr , with the components of the unit vector �γr given by

γrx = γx = sin ξ1 cos φ. (B4)
γry = γy = sin ξ1 sinφ cos α1 − cos ξ1 sinα1. (B5)
γrz = −γz = − (sin ξ1 sinφ sin α1 + cos ξ1 cos α1) . (B6)

These components define a circular cone similar to that of the incident
cone, but rotated through an angle (π−α1) and with the replacement
φ → −φ . The second condition is necessary for the incident and
reflected wave vectors to satisfy the relation θk1 = θk2 in their plane
of incidence.

As for the transmitted wave vector, we have �ktrans = (ω/c1)�γt ,
where

γtx = γx = sin ξ1 cos φ, (B7)
γty = γy = (sin ξ1 sinφ cos α1 − cos ξ1 sinα1) . (B8)
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The z-component of the transmitted wave vector is given as

kztrans = (ω/c2) cos θk2. (B9)

Notice that the dispersion relationship in the second medium is satis-
fied because

kxtrans = (ω/c2) sin θk2 cos φk2 = (ω/c1) sin θk1 cos θk1,

kytrans = (ω/c2) sin θk2 sinφk2 = (ω/c1) sin θk1 sin θk1,

√
k2

xtrans + k2
ytrans = (ω/c2) sin θk2 = (ω/c1) sin θk1, (B10)

which is Snell’s law. It, then, follows that

k2
xtrans + k2

ytrans + k2
ztrans = (ω/c2)2

(
sin2 θk2 + cos2 θk2

)
= (ω/c2)2.

(B11)

This is the correct dispersion relationship for waves propagating in
the second medium. The z-component of the transmitted wave vector
given in Eq. (B9) can be rewritten as follows:

kztrans = (ω/c2)
√

1 − sin2 θk2.

Using Snell’s law, we obtain

kztrans = (ω/c2)
√

1 − (c2/c1)2 sin2 θk1

= (ω/c2)
√

1 − (c2/c1)2 + (c2/c1)2 cos2 θk1.

Substituting for cos θk1 in terms of ξ1, α1 and φ , we get

kztrans = (ω/c1)(c1/c2)

·
√

1 − (c2/c1)2 + (c2/c1)2 (sin ξ1 sinφ sinα1 + cos ξ1 cos α1)
2.

Therefore, the z-component of the transmitted unit vector �γt is given
by

γtz = γ̃z = (c1/c2)

·
√

1−(c2/c1)2+(c2/c1)2(sin ξ1 sinφ sinα1+cos ξ1 cos α1)
2. (B12)
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