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1. INTRODUCTION

The formulation of the dyadic Green’s function for perfectly conducting
rectangular cavities has previously received considerable attention in
literature. Classical methods, like the eigenfunction expansion [1–5]
and the image theory [6–8], have been the basic devices to build the
solution. Depending on the approach selected, they emphasize specific
features of electromagnetic propagation in a cavity, as shown by the
different mathematical morphology of the expressions that the two
techniques return.

The eigenfunction method generates the Green’s dyadic function
through a modal formalism, which underlines the frequency selection
operated by the rectangular enclosure and explicitly reveals that the
dyadic is not bounded at the resonant frequencies. The image theory
leads to a series representation of the Green’s dyadic that points up
the contribution of both the source and the multiple reflections on
the conducting walls. Also, this approach shows directly the singular
behavior when the observation point approaches the source point [9].
When this condition is anticipated, severe problems of convergence
affect the series appearing in the Green’s dyadic.

So far, the intrinsic problems of computational efficiency associated
to Green’s dyadic discouraged the use of the integral equation for-
mulation to solve for electromagnetic interactions inside rectangular
cavities.

This study presents a set of alternative procedures yielding the
Green’s dyadic function by means of mathematical expressions that
are numerically advantageous for Method of Moments (MoM) applica-
tions.

After a brief overview of the canonical methods used to derive the
electric-type Green’s dyadic function for rectangular cavities (Section
2), we introduce a complementary formulation consisting of a joint
application of the image principle and the plane wave expansion of the
electromagnetic field (Section 3).

The image-spectral approach, built directly on the electric field
rather than on the potential, is initially established by replacing an
infinitesimal current source inside the enclosure with a lattice of im-
ages that satisfy the boundary conditions at the cavity’s walls. Subse-
quently, the field contribution of any image is expressed as an expansion
of plane waves. The resulting spectral representation involves both a
double integral and a Dirac delta function accounting for the source
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region and leads to the Green’s dyadic function as a double series that
is consistent with the classical results.

We discuss the properties of convergence of the series involved in
this representation and compare it with the classical formulation at-
tainable in literature. We remark that the mutual location of the source
point and the observation point plays a fundamental role to select the
spectral variable of integration that gives the fastest convergence.

When the observation point is very close to the source point, the
convergence is inherently critical. For this specific situation, we have
adapted and extended to the dyadic case the method introduced by
P. P. Ewald to accelerate the computation of electrodynamic potentials
generated by a three-dimensional periodic lattice of sources (Section
4).

We finally present results on the calculation of the Green’s dyadic
function that proves de facto the numerical efficiency of the notions
reported in the paper.

2. DYADIC GREEN’S FUNCTION FOR A PERFECTLY
CONDUCTING CAVITY

The electric Green’s dyadic function GE (r, r′) is the tensor kernel of
the integral operator that transforms the boundary conditions and the
electric current density Je (r′) into the electric field E (r) as follows:

E (r) = −jωµ
∫∫∫
V ′

GE

(
r, r′

)
Je

(
r′

)
dr′ (1)

For a lossless metallic enclosure, GE is the solution of the differential
equation with boundary conditions{

∇×∇×GE (r, r′)− k2GE (r, r′) = Iδ (r− r′)
n̂×GE (r, r′) = 0 r ∈ S

(2)

where I is the unit dyadic, r and r′ are, respectively, the coordinates
of the observation and of the source points, k is the wave number
related to the medium in the cavity and n̂ is the local normal to the
surface S that bounds the volume of the cavity.

The classical method to represent the electric dyadic Green’s func-
tion for lossless rectangular cavities consists of using an eigenfunction
expansion as done by Morse and Feshback [1] and Tai [2, 3].
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The dyadic is obtained as a triple series by expanding the gener-
alised tensor function Iδ (r− r′) in terms of an appropriate set of
vector wave functions that are solutions of the homogeneous problem.
Thereafter, the Ohm-Rayleigh method is applied. This technique leads
to the Green’s dyadic in terms of two solenoidal (transversal) sets ETE

S
and ETM

S and one irrotational (longitudinal) component EL as the
Helmhotz theorem dictates, i.e.:

GE

(
r, r′

)
=

+∞∑
r=0

+∞∑
s=0

+∞∑
t=0

(ε0rε0sε0t
abc

) [
ETE
S (r)ETE

S (r′)(
k2
rst−k2

)
k2
rs

+
ETM
S (r)ETM

S (r′)(
k2
rst−k2

)
k2
rstk

2
rs

− EL (r)EL (r′)
k2
rstk

2

]
(3)

where

ETE
S (r) =∇×

[
cos

(rπ

a

)
cos

(sπ

b

)
sin

(
tπ

c

)]
ETM
S (r) =∇×∇×

[
sin

(rπ

a

)
sin

(sπ

b

)
cos

(
tπ

c

)]
EL (r) =∇

[
sin

(rπ

a

)
sin

(sπ

b

)
sin

(
tπ

c

)]
k2
rst =

(rπ

a

)2
+

(sπ

b

)2
+

(
tπ

c

)2

k2
rs =

(rπ

a

)2
+

(sπ

b

)2

ε0p =
{

1 for p = 0
2 for p �= 0

and a, b, c are the dimensions of the cavity along the x, y, z axes
respectively.

Rahmat-Samii [4] proposed an equivalent method that derives the
Green’s dyadic function through the diagonal dyadic potential GA

as an intermediary step. GA is solution of the following differential
equation with the associated boundary conditions:∇

2GA (r, r′) + k2GA (r, r′) = −Iδ (r− r′)
n̂×GA (r, r′) = 0 r ∈ S
∇ ·GA (r, r′) = 0 r ∈ S

(4)
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Solving for GA and using the relation GE =
[
I+∇∇k2

]
GA we obtain

the electric Green’s dyadic as:

GE

(
r, r′

)
=

+∞∑
r=0

+∞∑
s=0

+∞∑
t=0

(ε0rε0sε0t
abc

) 1(
k2
rst−k2

) [
Ψx
rst (r) Ψx

rst

(
r′

)
x̂x̂

+Ψy
rst (r) Ψy

rst

(
r′

)
ŷŷ + Ψz

rst (r) Ψz
rst

(
r′

)
ẑẑ

]
− 1

k2

+∞∑
r=0

+∞∑
s=0

+∞∑
t=0

(ε0rε0sε0t
abc

) 1(
k2
rst−k2

)
· ∇Ψrst (r)∇

′
Ψrst

(
r′

)
(5)

where

Ψx
rst (r) = cos

(rπ

a

)
sin

(sπ

b

)
sin

(
tπ

c

)
Ψy
rst (r) = sin

(rπ

a

)
cos

(sπ

b

)
sin

(
tπ

c

)
Ψz
rst (r) = sin

(rπ

a

)
sin

(sπ

b

)
cos

(
tπ

c

)
Ψrst (r) = sin

(rπ

a

)
sin

(sπ

b

)
sin

(
tπ

c

)
The triple sum appearing in both the (3) and the (5) can be reduced
to a double one by resolving in closed form with respect to a selected
index.

We note that the singular term of the dyadic is embedded, respec-
tively, in the longitudinal term of the (3) and in the second sum of
the (5), whereas the just a poxition of the operators ∇ and ∇′ is
performed.

The last alternative approach we mention was proposed by Hamid
[6]. The method derives the potential Green’s function using a ray-
optical technique for large wave numbers. After replacing the infinites-
imal primary source with a lattice of images, the vector potential is
obtained by adding up the ray contributions from each source and
applying the geometrical optics approximation. This asymptotic tech-
nique requires that the electrical length of each ray be greater than a
few radians so that the principle of stationary phase can be applied.
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3. IMAGES EXPANSION AND PLANE-WAVES

REPRESENTATION

3.1 Scheme of the Solution

We reduce the boundary value problem defined by (2) to the equiv-
alent problem of a periodical infinite lattice of time-varying sources in
free space by applying the image theory. Consider that the volume V
of the rectangular cavity is confined in the region of space 0 ≤ x ≤ a ,
0 ≤ y ≤ b , 0 ≤ z ≤ c . Both the observation point and the primary
source point belong to V . We build the infinite lattice of sources start-
ing with the basic cell of eight sources which are generated by mirroring
the primary source on the three planes x = 0, y = 0, z = 0 with the
appropriate sign. The basic cell is then repeated with periods 2a, 2b
and 2c along the x, y and z directions, respectively, to produce the
equivalent free space problem.

The resulting field at a generic observation point inside the cavity
can be interpreted as the superposition of the contributions from in-
finite images, whose locations depend on both the size of the cavity
and the position of the primary source. This formulation yields explic-
itly the singular behavior of the Green’s dyadic in the primary source
region.

In mathematical terms, we can write the global Green’s function as
an infinite three-dimensional array of dyadics:

GE

(
x, y, z, x′, y′, z′

)
=

+∞∑
r=−∞

+∞∑
s=−∞

+∞∑
t=−∞

GC
E

(
x, y, z, x′ + 2ra, y′ + 2bs, z′ + 2tc

)
(6)

where GC
E (x, y, z, x′, y′, z′) is the Green’s function of the basic cell.

To calculate GC
E , we must account for the orientation of the pri-

mary electric current source with respect to the walls for each principal
direction since this influences the sign of the relevant image. This im-
plies that we will build the dyadic GC

E through a column-by-column
process. We begin to construct GC

E from the spectral representation
of the electric Green’s dyadic function in free space G̃FS

E in cartesian
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coordinates for a single point source:

G̃FS
E

(
kx, ky, kz, x

′, y′, z′
)

=
− exp [j (kxx′+kyy

′+kzz
′)]

k2
0

(
k2

0 − k2
x − k2

y − k2
z

)
·

 k2
0 − k2

x −kxky −kxkz
−kykx k2

0 − k2
y −kykz

−kzkx −kzky k2
0 − k2

z

 (7)

We start the process by considering a z-oriented delta source located in
r′ , which leads us to work on the third column of the spectral dyadic.
By summing the eight elements of the basic cell with their appropriate
sign we obtain the third column of GC

E as follows:

G̃C(3)
E

(
kx, ky, kz, x

′, y′, z′
)

= G̃FS(3)
E

(
kx, ky, kz, x

′, y′, z′
)
− G̃FS(3)

E

(
kx, ky, kz,−x′, y′, z′

)
− G̃FS(3)

E

(
kx, ky, kz, x

′,−y′, z′
)

+ G̃FS(3)
E

(
kx, ky, kz,−x′,−y′, z′

)
+ G̃FS(3)

E

(
kx, ky, kz, x

′, y′,−z′
)
− G̃FS(3)

E

(
kx, ky, kz,−x′, y′,−z′

)
− G̃FS(3)

E

(
kx, ky, kz, x

′,−y′,−z′
)

+ G̃FS(3)
E

(
kx, ky, kz,−x′,−y′,−z′

)
=

8 sin (kxx′) sin (kyy′) cos (kzz′)

k2
0

(
k2

0 − k2
x − k2

y−k2
z

) ·

 −kxkz−kykz
k2

0 − k2
z

 (8)

This representation of the third column of GC
E can be inserted in (6)

yielding the corresponding column of the Green’s dyadic function for
the rectangular cavity:

G(3)
E

(
r, r′

)
= −

+∞∑
r=−∞

+∞∑
s=−∞

+∞∑
t=−∞

1
8π3

∫∫∫ +∞

−∞

· 8 sin (kxx′) sin (kyy′) cos (kzz′)
k2

0

(
k2

0 − k2
x − k2

y − k2
z

)
 kxkz

kykz
k2
z − k2

0


· exp [j (2ra− x) kx] exp [j (2bs− y) ky]
· exp [j (2tc− z) kz] dkxdkydkz (9)

We can now reduce the triple integral in (9) to a double integral by
resolving in closed form with respect to one of the variables kx, ky, kz
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with the contour integration method. Without loss of generality, we
select to close the integral with respect to kz variable, which yields:

G(3)
E

(
r, r′

)
=

+∞∑
r=−∞

+∞∑
s=−∞

+∞∑
t=−∞

1
4π2

∫+∞∫
−∞

G̃(3)
E

(
kx, ky, x

′, y′, z′, z
)

· exp [−j (kxx + kyy)] dkxdky −
ẑẑ
k2

0

δ
(
r− r′

)
(10)

where

G̃(3)
E

(
kx, ky, x

′, y′, z′, z
)

=
2j
k2

0

sin (kxx′) sin (kyy′)√
k2

0 − k2
x − k2

y

exp (j2rakx) exp (j2bsky)

·

exp
(
−jkzp

∣∣z+2ct−z′
∣∣)  −sign (z+2ct−z′) kxkzp
−sign (z+ 2ct−z′) kykzp

k2
x + k2

y


+ exp

(
−jkzp

∣∣z+2ct + z′
∣∣) −sign (z+2ct + z′) kxkzp
−sign (z+2ct + z′) kykzp

k2
x + k2

y


and kzp =

√
k2

0 − k2
x − k2

y . We notice that
√

k2
0 − k2

x − k2
y is a branch

singularity and its sign must be selected to guarantee the convergence
of the integrand, i.e., Im(kzp) < 0 and Re(kzp) > 0 .

The double integral in (10) can be also solved in closed form if we
recall the relation

∑
n e
−j2nLξ = π

a

∑
n δ

(
ξ − nπ

L

)
. After some algebra,

we can cast the third column of the dyadic as follows:

G(3)
E

(
r, r′

)
=

j

2k2
0

1
ab

+∞∑
r=−∞

+∞∑
s=−∞

+∞∑
t=−∞

·
sin

(rπ

a
x′

)
sin

(sπ

b
y′

)
√

k2
0 −

(rπ

a

)2
−

(sπ

b

)2
exp

[
−j

(rπ

a
x +

sπ

b
y
)]

·


exp

(
−jkrsp

∣∣z+2ct− z′
∣∣)

−sign (z+2ct−z′) rπ

a
krsp

−sign (z+2ct−z′) sπ
b
krsp(rπ

a

)2
+

(sπ

b

)2


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+ exp
(
−jkrsp

∣∣z + 2ct + z′
∣∣)

·


−sign (z + 2ct + z′)

rπ

a
krsp

−sign (z + 2ct + z′)
sπ

b
krsp(rπ

a

)2
+

(sπ

b

)2




− ẑẑ

k2
0

δ
(
r− r′

)
(11)

where krsp =
√

k2
0 −

(
rπ
a

)2 −
(
sπ
b

)2 .
It is worth emphasizing that the primary source is the origin of the

Dirac delta contribution in (11) and this is the only one retained since
the observation point lies inside the cavity by definition.

We can further simplify the sums involved in (11) by working out
the individual components x̂ẑ , ŷẑ and ẑẑ of the dyadic.

Let us consider the first row of expression (11), which corresponds
to the element Gxz

E . We observe that the sum in t is an even function
of the integers r and s , so we can write the equivalent expression:

Gxz
E

(
r, r′

)
=

1
k2

0

2
ab

+∞∑
r=1

+∞∑
s=1

rπ

a
cos

(rπ

a
x
)

sin
(rπ

a
x′

)
sin

(sπ

b
y′

)
sin

(sπ

b
y
)

·
+∞∑
t=−∞

[
exp

(
−jkrsp

∣∣z+2ct−z′
∣∣) sign

(
z+2ct−z′

)
+ exp

(
−jkrsp

∣∣z+2ct+z′
∣∣) sign

(
z+2ct+z′

)]
(12)

Recalling the identity
∑+∞

n=1 e
−j2αnx = −1

2 [j cot (αx) + 1] , the sum t
appearing in (12) can be calculated after some mathematical manipu-
lations and it is reduced to the function:

2j sin (krspz) cos (krspz′) (j cot (krspc) + 1) for t �= 0
2 cos

(
krspz

′) exp (−jkrspz) z > z′

− 2j sin (krspz) exp
(
−jkrspz′

)
z < z′

for t = 0

Finally, the expression for Gxz
E takes the form

Gxz
E

(
r, r′

)
= − 1

k2
0

4
ab

+∞∑
r=1

+∞∑
s=1

rπ

a
cos

(rπ

a
x
)

sin
(rπ

a
x′

)
sin

(sπ

b
y
)

sin
(sπ

b
y′

)
·
{

cos (krspz′) [cos (krspz)−sin (krspz) cot (krspc)] z > z′

− sin (krspz) [sin (krspz′)+cos (krspz′) cot (krspc)] z < z′
(13)
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It is important to underline that Gxz
E is continuous at z = z′ . This

can be easily inferred by taking the limit for z → z′ from both the
left and the right and using the relation

∑+∞
n=1 n sin (αn) = 0 (see

Appendix A.6 of [5]).
Applying the identical scheme to the second and third row of ex-

pression (11), we obtain the result for Gyz
E and Gzz

E that we report
here for completeness:

Gyz
E

(
r, r′

)
= − 1

k2
0

4
ab

+∞∑
r=1

+∞∑
s=1

sπ

b
sin

(rπ

a
x
)

sin
(rπ

a
x′

)
cos

(sπ

b
y
)

sin
(sπ

b
y′

)
·
{

cos (krspz′) [cos (krspz)− sin (krspz) cot (krspc)] z > z′

− sin (krspz) [sin (krspz′) + cos (krspz′) cot (krspc)] z < z′
(14)

Gzz
E

(
r, r′

)
= − 1

k2
0

4
ab

+∞∑
r=1

+∞∑
s=1

(rπ

a

)2
+

(sπ

b

)2

krsp
sin

(rπ

a
x
)

· sin
(rπ

a
x′

)
sin

(sπ

b
y′

)
sin

(sπ

b
y
)

·
{

cos (krspz′) [sin (krspz) + cos (krspz) cot (krspc)] z > z′

cos (krspz) [sin (krspz′) + cos (krspz′) cot (krspc)] z < z′

− ẑẑ
k2

0

δ
(
r− r′

)
(15)

This concludes the derivation of the third column of the dyadic Green’s
function for a lossless rectangular cavity.

Equivalent mathematical formulations would have resulted if we had
closed the integral (9) with respect to the kx or the ky variable.

We can apply the identical procedure to build the other two columns,
considering both the x-oriented and the y-oriented sources associated
with the relevant images and, finally, complete the dyadic Green’s func-
tion. Symmetry is a useful property for the overall process since it
allows us to solve for six elements instead of nine to fill the dyadic.

The results shown here are consistent with those reported in [3] and
[5], which also consider a double sum in z .
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3.2 Consideration on the Convergence

The dyadic Green’s function exhibits, in general, well-behaved con-
vergence when the observation point is outside the source region. In
particular, considering for example the results (13)–(15), the asymp-
totic behavior of those expression (i.e., for large r and s) is exp (−α
|z − z′|) where α =

√(
rπ
a

)2 +
(
sπ
b

)2 − k2
0 . Therefore, the larger the

distance along z between the coordinates of the source and the obser-
vation point, the faster the convergence of the summations is antici-
pated.

Generalizing this consideration, we can cast the dyadic Green’s func-
tion by closing the triple integrals for columns, similar to (9), with re-
spect to the spectral variable revealing the larger separation of the in-
dividual cartesian components between the observation and the source
point.

To illustrate the numerical efficiency of this scheme, let Ez (x, y, z)
be the z-component of the electric field observed in (x, y, z) generated
by a z-oriented hertzian dipole of length l centered in (x0, y0, z0)
which supports a constant current I.

We calculate Ez (x, y, z) by:

Ez (x, y, z) = jωµ

∫∫∫
V ′

+∞∑
r=−∞

+∞∑
s=−∞

+∞∑
t=−∞

1
8π3∫∫∫ +∞

−∞

8 sin (kxx′) sin (kyy′) cos (kzz′)

k2
0

(
k2

0 − k2
x − k2

y−k2
z

)
·
(
k2
z − k2

0

)
exp [j (2ra− kxx)] exp [j (2bs− kyy)]

· exp [j (2tc− kzz)] dkxdkydkzδ
(
x′ − x0

)
· δ

(
y′ − y0

)
rect

(
z′ − z0

l/2

)
dx′dy′dz′ (16)

We close the inner triple integral with respect to the variables kx, ky
and kz and consider, without loss of generality, the case x > x0, y >
y0, z > l/2 + z0 . After some mathematical manipulations we obtain,
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respectively, the following three equivalent expressions for Ez (x, y, z) :

Ez (x, y, z) = − 4j
εω

I
bc

+∞∑
s=1

+∞∑
t=0

ε0t

k2
0 −

(
tπ

c

)2

kpst ·
tπ

c

sin
(sπ

b
y
)

sin
(sπ

b
y0

)

· cos
(
tπ

c
z

)
cos

(
tπ

c
z0

)
sin

(
tπ

c

l

2

)
sinh (kpstx0)

· exp (−kpstx)
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where kpst =
√(

sπ
b

)2+
(
tπ
c

)2− k2
0, kprt =

√(
rπ
a

)2+
(
tπ
c

)2− k2
0 , kprs =√(

rπ
a

)2 +
(
sπ
b

)2 − k2
0 .

We can now compare the numerical convergence of (17)–(19) by
setting a = 3 m, b = 4 m, c = 5 m, l = 10 cm, I = 1 mA and
f = 155 MHz. The centre of the dipole source is placed at (1,1.5,2.5)
meter. We assume that convergence is reached when the fourth decimal
digit of Ez , expressed in mV/m and calculated following (17)–(19), is
stable.

In Table 1 we show the number of terms required by the sums (17),
(18) and (19), respectively, to achieve convergence as a function of the
observation point. The distance ∆x = (x − x0) is kept constant and
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Table 1. Number of terms required to achieve convergence (to the
fourth decimal place) as a function of the mutual location of the source
point and observation point. The distance along the x-direction is kept
constant (∆x = x− x0 = 1.5 m) whilst the distances along y (∆y =
y − y0) and z (∆z = z − z0 − l/2) are parametric. Source position:
(x0, y0, z0) = (1, 1.5, 2.5) m. Parameters: f = 155 MHz, a = 3 m, b =
4 m, c = 5 m, l = 10 cm and I = 1 mA.

∆x ∆y ∆z N. of terms N. of terms N. of terms E (mV/m)

for (17) for(18) for(19)

1.5 1.45 1.5 110 110 50 −3.4097

1.5 0.95 1 156 156 100 −2.8473

1.5 0.45 0.5 156 306 289 +2.2901

1.5 0.05 0.05 156 53130 57600 +5.0578

1.5 0.01 0.01 156 1441200 1440000 +5.1227

Table 2. Number of terms required to achieve convergence (to the
fourth decimal place) as a function of the mutual location of the source
point and observation point. The distance along the y-direction is kept
constant (∆y = y − y0 = 1.5 m) whilst the distances along x (∆x =
x − x0) and z (∆z = z − z0 − l/2) are parametric. Source position:
(x0, y0, z0) = (1, 1.5, 2.5) m. Parameters: f = 155 MHz, a = 3 m, b =
4 m, c = 5 m, l = 10 cm and I = 1 mA.

∆x ∆y ∆z N. of terms N. of terms N. of terms E (mV/m)

for (17) for(18) for(19)

1.45 1.5 1.5 50 110 110 −3.2496

0.95 1.5 1 121 110 132 −2.3060

0.45 1.5 0.5 676 156 552 +4.9935

0.05 1.5 0.05 78400 210 78680 +11.8769

0.01 1.5 0.01 1960000 156 3064250 +12.1339

equal to 1.5 m, while ∆y = (y − y0) and ∆z = (z − z0 − l/2) are
parametric.

Similarly this is done for Tables 2 and 3, where the distances ∆y =
(y − y0) and ∆z = (z − z0 − l/2) are, respectively, fixed to 1.5 m.

The results shown in Tables 1–3 clearly confirm the initial postu-
late that, in order to get the fastest convergence, the most convenient
integration variable is the one leading to the largest separation dis-
tance among the individual coordinates of the observation point and
the source. When the distance between observation point and source is
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Table 3. Number of terms required to achieve convergence (to the
fourth decimal place) as a function of the mutual location of the source
point and observation point. The distance along the z-direction is
kept constant (∆z = z − z0 − l/2 = 1.5 m) whilst the distances along
x (∆x = x−x0) and y (∆y = y−y0) are parametric. Source position:
(x0, y0, z0) = (1, 1.5, 2.5) m. Parameters: f = 155 MHz, a = 3 m, b =
4 m, c = 5 m, l = 10 cm and I = 1 mA.

∆x ∆y ∆z N. of terms N. of terms N. of terms E (mV/m)

for (17) for(18) for(19)

1.45 1.45 1.5 110 110 81 −3.6923

0.95 0.95 1.5 272 272 81 −7.6928

0.45 0.45 1.5 1332 1332 100 +1.2534

0.05 0.05 1.5 144780 144780 144 +8.4100

0.01 0.01 1.5 3241800 3241800 121 +8.5043

small along a particular direction, we notice that the number of terms
required to achieve convergence may differ in four orders of magnitude
depending on the selected formulation.

However, when the observation point tends to the source point in
all three directions, the asymptotic exponential term tends to unity
causing severe convergence problems to the series (17)–(19).

This situation always occurs when the Green’s function is used for
numerical solutions with the Method of Moments and therefore alter-
native expressions must be considered.

Several techniques [10–12] have been proposed to accelerate the con-
vergence of the series involved in the calculation of the Green function
in the source region. In 1921 P. P. Ewald developed an extremely effi-
cient technique for calculating the electrostatic (electrodynamic) scalar
potential in a three-dimensional periodic system of point charges [13,
14] which is still regarded as the state-of-art for this specific applica-
tion.

His mathematical process is physically equivalent to first neutral-
ising each point source by the superposition of a spherical gaussian
distributions of opposite charge, centered on the original source. This
aggregate of the sources is the forcing term of the Poisson (Helmhotz)
equation, whose solution yields the space domain part of the potential.
Subsequently, a second identical set of gaussian distribution with op-
posite sign, still centered on the point charges, is further superimposed
to cancel out the effect of the first set. The potential due to these
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sources is obtained by solving the corresponding Poisson (Helmhotz)
equation as a Fourier series. This yields the reciprocal space part of
the potential. Both the real space and the reciprocal space contribu-
tions of the potential exhibit fast convergence, in particular when the
observation point is in the source region.

Having previously reduced our original problem to a three-dimen-
sional lattice of current sources in free space, it is now natural to extend
the Ewald Method to the dyadic case.

4. IMAGES EXPANSION AND EWALD’S METHOD

In principle, the Green’s dyadic function for a lattice of infinitesimal
current sources could be calculated either by adding up the free space
dyadic of all the sources of the lattice in the spatial domain or by using
the modal theory yielding the Floquet’s representation in the reciprocal
domain. These two approaches are a Fourier-transform pair and each
of them exhibits convergence problems inherently connected with the
singularities of the transformed domain. Namely, the singularities in
the spectral domain (i.e., the cavity’s resonances) are reflected in the
slowly convergent series of the spatial domain, while the singularity of
the source region in the spatial domain slows down the convergence of
the series in the reciprocal domain.

Here we aim to replace a slowly converging sum for the dyadic with
two rapidly converging sums, one in the real space and the other in the
reciprocal space with a hybrid spatial-spectral representation, as done
by Ewald.

This is accomplished by adding and subtracting to the infinitesi-
mal current sources of the lattice, the current distribution with the
following density

I
(
r, r′

)
=

exp
(
η2k2

0

4

)
η3π

3
2

exp
(
−|r− r

′ |2
η2

)
(20)

where r
′

is the position of the generic lattice source and η is a positive
parameter that adjusts the width of the gaussian distribution.

We then generate an equivalent scheme of solution:∇
2DSD

A + k2
0D

SD
A = −S1 (r, r′)

DSD
E =

[
I+
∇∇
k2

0

]
DSD
A

(21)
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∇×∇×DRS
E

(
r, r′

)
− k2

0D
RS
E

(
r, r′

)
= S2

(
r, r′

)
(22)

in such a way that the global Green’s function GE is given by

GE

(
r, r′

)
= DSD

E

(
r, r′

)
+ DRS

E

(
r, r′

)
. (23)

In (21) and (22)

S1

(
r, r′

)
= x̂x̂

+∞∑
r=−∞

+∞∑
s=−∞

+∞∑
t=−∞

SX
[
δ
(
X±r , Y ±s , Z

±
t

)
− I

(
X±r , Y ±s , Z

±
t

)]

+ ŷŷ
+∞∑
r=−∞

+∞∑
s=−∞

+∞∑
t=−∞

SY
[
δ
(
X±r , Y ±s , Z

±
t

)
− I

(
X±r , Y ±s , Z

±
t

)]

+ ẑẑ
+∞∑
r=−∞

+∞∑
s=−∞

+∞∑
t=−∞

SZ
[
δ
(
X±r , Y ±s , Z

±
t

)
−I

(
X±r , Y ±s , Z

±
t

)]
(24)

S2

(
r, r′

)
=

+∞∑
r=−∞

+∞∑
s=−∞

+∞∑
t=−∞

[
x̂x̂ SX I

(
X±r , Y ±s , Z

±
t

)
+

+ŷŷ SY I
(
X±r , Y ±s , Z

±
t

)
+ ẑẑ SZ I

(
X±r , Y ±s , Z

±
t

)]
(25)

where X±r = x± x′+ 2 ra , Y ±s = y ± y′+ 2 bs and Z±t = z ± z′+ 2 tc
are shorthand notations that will be used throughout the remainder
of the paper and identify the mutual position between the observation
point and the generic source of the lattice. Furthermore, each triplet(
X±r , Y ±s , Z

±
t

)
must be intended as the superposition of eight terms

corresponding to all the possible combinations ( +++,++−, · · · etc.).
In (24) and (25), SX, SY and SZ are defined as follows:
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−
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)
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)
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)
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)
−1 for

(
X−r , Y +

s , Z
±
t

)
or

(
X+
r , Y −s , Z

±
t

)
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The dyadic operators DSD
E and DRS

E in equations (21) and (22) rep-
resent the electromagnetic response in free space to a lattice of dyadic
source expressed respectively by S1 and S2 .

The parameter η determines the balance between the contributions
of DSD

E and DRS
E . A small η places the major computational effort

on DRS
E , while a large η moves the computational burden on DSD

E .
By construction, the final result will be necessarily independent of η .

4.1 Calculation of the Spatial Contribution

The equation (21) is solved in the spatial domain since the original
impulsive currents, counteracted by the gaussian current distributions,
give rise to a fast decaying field at long range.

Given the linearity and the space invariance of equation (21), the
problem is then reduced to solving the equation:

∇2Ψ
(
r, r′

)
+ k2

0Ψ
(
r, r′

)
= −δ

(
r− r′

)
+

e
η2k20

4

η3π
3
2

e
− |r−r′|2

η2 (26)

which yields

Ψ
(
r, r′

)
=

1
4π|r− r′| cos

(
k0|r− r′|

)
− 1

8π|r− r′|e
+jk0|r−r′|Φ

(
|r− r′|/η + jk0η/2

)
− 1

8π|r− r′|e
−jk0|r−r′|Φ

(
|r− r′|/η − jk0η/2

)
(27)

where Φ is the error function. The mathematical details of the solution
are given in Appendix A.

We notice that the contributions of the furthermost sources (i.e.,
when |r− r′| is large) can be approximated as:

Ψ
(
r, r′

)
� 1

4π|r−r′| cos
(
k0|r−r′|

)
−Φ

(
|r−r′|/η

) 1
4π|r−r′| cos

(
k0|r−r′|

)
(28)

The fast convergence of the error function to 1, for sufficiently large
arguments, corresponds to a fast convergence of Ψ to 0. Consequently,
the series representation of the lattice contributions achieves it final
value rapidly.
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Finally the spatial domain component of the Green’s dyadic function
can be cast as:

DSD
E

(
r, r′

)
=

(
I +
∇∇
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0

)
·

+∞∑
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(29a)

where
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(29b)

4.2 Spectral Domain Contribution

The reciprocal domain contribution, DRS
E , can be computed by

making use of the eigenfunctions representation of the dyadic Green’s
function (Section 2). The expression (22), where S2 has arisen from
the application of the image theorem in a stepwise fashion, can be
recast as follows:{

∇×∇×DRS
E (r, r′)− k2

0D
RS
E (r, r′) = II (r− r′)

n̂×DRS
E (r, r′) = 0 r∈ S

(30)

where I is the unit dyadic, r and r′ are, respectively, the coordinates
of the observation and of the gaussian current points and n̂ is the local
normal to the surface S that bounds the volume of the cavity.

Now, by comparing (30) with (2), it follows that

DRS
E

(
r, r′

)
=

∫∫+∞∫
−∞

GE (r, ξ) I
(
ξ − r′

)
dξ (31)
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In (31), the integrand involves terms like those shown in (32) and
corresponding to the first, second and third column of the dyadic re-
spectively, that can be calculated in closed form:

e
η2k20

4

η3π
3
2

∫∫+∞∫
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(32)

Finally, the spectral domain contribution to the Green’s function as-
sumes the following expression:

DRS
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=
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(ε0rε0sε0t
abc

)
· exp

{
−η2

4

[(rπ

a

)2
+

(sπ

b

)2
+

(
tπ

c

)2

− k2
0

]}

·
[
ETE
S (r)ETE
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]
(33)

where ETE
S , ETM

S and EL are reported in Section 2.

4.3 Demonstration of the Effectiveness of the Ewald’s Ap-
proach

To validate the effectiveness of the dyadic Ewald approach, we con-
sider again the case of a z-oriented dipole inside a cavity. This time, we
assume that the dipole supports a piecewise sinusoidal (PWS) current
as follows:

I (x, y, z, x0, y0, z0) = I ·
sin

[
k0

(
l

2
− |z − z0|

)]
sin

(
k0

l

2

) δ (x− x0)

· δ (y − y0) rect
(
z − z0

l/2

)
(34)
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Our choice of the linear PWS current distribution is dictated by its
importance in practical problems. Interaction and radiation of elec-
tromagnetic fields in the presence of wire structures are widely treated
with the “thin-wire approximation” (i.e., length to radius ratio greater
than 10), which assumes a filament distribution of current along the
wire axis. Furthermore, the PWS function allows us to solve the radia-
tion integral in closed form whatever the complexity of kernel involved.
In this light, the PWS distribution is regarded as the most convenient
basis function for wire-oriented Method of Moments built on the elec-
tric type Green’s function, rather than on the potential vector, inside
rectangular enclosures.

For illustrative purposes only, we compute the z-component of the
electric field radiated by the PWS current by invoking both the Green’s
function computed in Section 3 and the Green’s function as expressed
by (23) and performing a convolution between the ẑẑ term of the cor-
responding dyadic and the PWS source. Applying the Green’s function
computed in Section 3 in its most advantageous form to a PWS current
distribution we get:

Ez (x, y, z) = − 4j
εω

I
ac

+∞∑
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+∞∑
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ε0t
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[
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]
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)
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a
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)
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c
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)
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)
1

sin
(
k0

l

2

)
· sinh (kprty0) exp (−kprty)

1− exp [−2kprt (b− y)]
1− exp (2kprtb)

(35)

Then, to compute the field throughout the Ewald’s method, we invoke
the general formula for the PWS current distribution [15]:∫ z′+l/2

z′−l/2
I (ζ)

(
1 +

1
k2

0

∂2

∂z2

)
F (R) dζ

=
1
k0

[
F (R+) + F (R−)− 2 cos

(
k0

l

2

)
F (R)

]
where I (ζ) is a PWS function, F is a C(2) function, R± =√

(x−x′)2+(y−y′)2+(z−z′±l/2)2, and R =
√

(x−x′)2+(y−y′)2+(z−z′)2 .
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By identifying F with Ψrst in (29), also the spatial domain contri-
bution can be cast in closed form as we did for the reciprocal space
contribution. Summarising, the overall field (EEW

z ) takes the form:

EEW
z = ESD

z + ERS
z (36)

where
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and
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We now compare the computational effort required by (35) and (36)
in terms of the CPU time necessary to achieve a relative error less
than 1.E-8. The physical dimension of the cavity and the length of the
dipole are identical to the numerical case described in section 3. In
Tables 4 and 5, the position (x0, y0, z0) of the center of the z-oriented
dipole coincides with the center of the metallic enclosure. The cases
of f = 155 MHz with η = 1 and f = 316 MHz with η = 1.5 are
considered, respectively. The observation point is variable in the y
direction only and it lies on the straight line which results from the
intersection of the planes x = x0, z = z0 .
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Table 4. Comparison between the classical Green’s function and the
Green’s function derived throughout the Ewald’s approach by means of
the number of terms (N.) required to achieve convergence of the series
involved and the relative CPU time (in sec). Parameters: a = 3 m, b =
4 m, c = 5 m, l = 10 cm and I = 1 mA . Variables: f = 155 MHz, η =
1.5 m, (x0, y0, z0) = (1.5, 2, 2.5) m and (x, y, z) = (1.5, y, 2.5) m .

ERSz ESDz EEWz Ez

∆y N. E in mV/m N. E in mV/m CPU E in mV/m N. CPU E in mV/m

0.3 576 216.5299539 27 -128.8420274 1.1E-2 87.6879265 13110 9.E-2 87.6879263

0.1 576 225.8282199 27 218.5355531 1.1E-2 444.363773 90300 0.65 444.363765

0.05 576 226.7183758 27 1968.457673 1.1E-2 2195.17604 289982 2.2 2195.17600

0.01 576 227.0039033 27 29288.21712 1.1E-2 29515.2210 6505050 48.5 29515.2214

Table 5. Comparison between the classical Green’s function and the
Green’s function derived throughout the Ewald’s approach by means
of the number of terms (N.) required to achieve the convergence of
the series involved and the relative CPU time (in sec). Parameters:
a = 3 m, b = 4 m, c = 5 m, l = 10 cm and I = 1 mA . Variables:
f = 316 MHz, η = 1 m, (x0, y0, z0) = (1.5, 2, 2.5) m and (x, y, z) =
(1.5, y, 2.5) m .

ERSz ESDz EEWz Ez

∆y = ∆z N. E in mV/m N. E in mV/m CPU E in mV/m N. CPU E in mV/m

0.3 2940 29823.4832369 27 -29796.9862372 1.8E-2 26.4969997 11342 7.5E-2 26.4969995

0.1 2940 32691.6121369 27 -32539.3857827 1.8E-2 152.226354 8556 0.62 152.226348

0.05 2940 32974.6499389 27 -32008.4222887 1.8E-2 966.227650 303050 2.24 966.227614

0.01 2940 33065.7531026 27 -19063.1534993 1.8E-2 14002.5996 7325142 54.5 14002.5996

In Tables 6 and 7, the position (x0, y0, z0) of the center of the z-
oriented dipole is located at (1.5,0.1,0.1) to enhance the effect of the
nearest images. Again, f = 155 MHz with η = 1 and f = 316 MHz
with η = 1.5 are considered, respectively. The observation point lies
on the plane x = x0 and moves along the straight line of equation
y = z − l/2 .

We remark that when the observation point approaches the source
region, the relative CPU time required by the classical Green’s func-
tion severely increases, whereas it remains constant for the case of the
Ewald’s approach. The computational effort necessary to achieve nu-
merical convergence with (35) exceeds that required by (36), ranging
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Table 6. Comparison between the classical Green’s function and the
Green’s function derived throughout the Ewald’s approach by means of
the number of terms (N.) required to achieve convergence of the series
involved and the relative CPU time (in sec). Parameters: a = 3 m, b =
4 m, c = 5 m, l = 10 cm and I = 1 mA . Variables: f = 155 MHz, η =
1.5 m, (x0, y0, z0) = (1.5, 0.1, 0.1) m and (x, y, z) = (1.5, y, z) m .

ERSz ESDz EEWz Ez

∆y N. E in mV/m N. E in mV/m CPU E in mV/m N. CPU E in mV/m

0.3 576 21.3813221 27 -35.3132958 1.1E-2 -13.9319737 12210 8.6E-2 -139319739

0.1 576 9.34607523 27 -567.964411 1.1E-2 -558.618335 281430 2 -558.618302

0.05 576 6.94513530 27 -8866.47472 1.1E-2 -8859.52958 6252500 45 -8859.52989

0.01 576 6.63894640 27 -21475.1326 1.1E-2 -21468.4936 24014900 169.8 -21468.4948

Table 7. Comparison between the classical Green’s function and the
Green’s function derived throughout the Ewald’s approach by means of
the number of terms (N.) required to achieve convergence of the series
involved and the relative CPU time (in sec). Parameters: a = 3 m, b =
4 m, c = 5 m, l = 10 cm and I = 1 mA . Variables: f = 316 MHz, η =
1 m, (x0, y0, z0) = (1.5, 0.1, 0.1) m and (x, y, z) = (1.5, y, z) m .

ERS
z ESD

z EEW
z Ez

∆y = ∆z N. E in mV/m N. E in mV/m CPU E in mV/m N. CPU E in mV/m

0.3 2940 8086.0375890 27 -8035.8353636 1.8E-2 50.2022254 8190 5.76E-2 50.2022246

0.1 2940 4217.6435698 27 -4532.6287487 1.8E-2 -314.985178 260640 1.88 -314.985153

0.05 2940 3178.2341554 27 -7695.1454892 1.8E-2 -4516.91133 5762400 42.51 -4516.91161

0.01 2940 3042.5838980 27 -13846.779104 1.8E-2 -10804.1952 23044800 163 -10804.1958

from one to four orders of magnitude, depending on the mutual dis-
tance between source and observation points. Furthermore, even more
advantageous is the Ewald’s technique when the observation point is
in the source region. However, for the treatment of this singular case,
extreme caution must be exercised. We recall that the starting point
of the Ewald’s technique is the application of the image theory that
gives us the ability of isolating the singular part of the dyadics that
can be treated apart analytically.
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5. CONCLUSION

This paper has reviewed the groundwork to solve for electromagnetic
interactions inside metallic enclosures using an integral equation for-
mulation. The useful application of this method prescribes to have at
hand expressions of the dyadic Green’s function that are numerically
efficient, which has been the main purpose of the study. After a brief
summary of the classical methods to derive the dyadic Green’s function
for rectangular cavities, we have proposed a complementary formula-
tion based on both the image theory and the plane wave expansion
of the electromagnetic field. This method enhances the flexibility to
select directly the most advantageous numerical representation of the
Green’s function in the light of the mutual position of the source and
the observation point. The results are consistent with those obtained
with classical methods. When the observation point is very close to
the source, the series composing the dyadic Green’s function exhibits
inherently slow convergence. The above situation is unavoidable in
the Method of Moments, especially where the calculation of the self-
admittance elements is concerned. We showed this problem could be
overcome by extending the method of Ewald, which accelerates the se-
ries of the scalar electrodynamic potential for a lattice of infinitesimal
source points, to the dyadic case. Basic examples of calculations have
been reported in tables to prove the efficiency and the reliability of the
notions described in the paper. This work proposes new perspectives
for the application of the Moment Method to the scattering of elec-
tromagnetic structures inside rectangular enclosures. In particular, we
anticipate that the Method of Moments will surely be competitive for
steady-state electromagnetic interaction of wire structures inside rect-
angular cavities with respect to the Finite Difference Method, which
is currently the dominant one in closed domains.

APPENDIX A

In this appendix we describe the process to derive (27) from (26).
We recall the Fourier transform pair

Ψ̃(k) =
∫ ∫ ∫

r

Ψ (r) e+jk·rdr

Ψ(r) =
1

8π3

∫ ∫ ∫
k

Ψ̃ (k) e−jk·rdk
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where Ψ (r) is a function in the tri-dimensional space domain and
Ψ̃ (k) is its Fourier transform. The spectral transform of the function

I(r) =
exp

(
η2k2

0

4

)
η3π

3
2

exp
(
−|r|

2

η2

)
(A1)

is calculated as follows:

I(k) =
e
η2k20

4

η3π
3
2

∫∫∫ +∞

−∞
e−(x2+y2+z2)/η2ej(kxx+kyy+kzz)dxdydz

=
e
η2k20

4

η3π
3
2

∫ +∞

0

∫ π

0

∫ 2π

0
e−r

2/η2ejkr cos θr2 sin θdrdθdϕ

=
2e

η2k20
4

η3
√
π

∫ +∞

0
r2e−r

2/η2
∫ π

0
ejkr cos θ sin θdθdr

=
2e

η2k20
4

η3
√
π

∫ +∞

0
re−r

2/η2 sin (kr) dr = e
η2(k20−k2)

4 (A2)

Now, we transform in the spectral domain equation (26) obtaining:

(
−k2 + k2

0

)
Ψ̃(k) = −ejk·r′ + e

η2(k20−k2)
4 ejk·r

′
(A3)

Thus

Ψ̃(k) =
ejk·r

′

k2 − k2
0

− e
−η2(k20−k2)

4

k2 − k2
0

ejk·r
′

(A4)

In the expression above we identify

Ψ̃A (k) =
ejk·r

′

k2 − k2
0

(delta source) (A5)

Ψ̃B(k) =
e−η

2(k2−k20)η
2

4

k2 − k2
0

ejk·r
′

(Gaussian source) (A6)

By anti-transforming we obtain:

ΨA

(
r, r′

)
=

1
8π3

∫ +∞

0

∫ π

0

∫ 2π

0

k2

k2 − k2
0

e−jk|r−r′| cosβ sinβdkdβdα
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=
1

4π2

∫ +∞

0

∫ π

0

k2

k2 − k2
0

e−jk|r−r′| cosβ sinβdkdβ

=
1

2π2|r− r′|

∫ +∞

0

k

k2 − k2
0

sin k|r− r′|dk

=
−j

4π2|r− r′|

∫ +∞

−∞

k

k2 − k2
0

ejk|r−r′|dk

=
e−jk0|r−r′|

4π|r− r′| (A7)

where the last integral has been closed using the classical residue the-
ory.

ΨB

(
r, r′

)
=

1
8π3

∫ +∞

0

∫ π

0

∫ 2π

0

k2

k2 − k2
0

e
−η2(k2−k20)

4

· e−jk|r−r′| cosβ sinβdkdβdα

=
−j

4π2|r− r′|

∫ +∞

−∞

k

k2 − k2
0

e
−η2(k2−k20)

4 ejk|r−r′|dk (A8)

Substituting the relation

e−
η2

4 (k2−k20)

k2 − k2
0

= −
∫ η

0

ξ

2
e−

ξ2

4 (k2−k20)dξ +
1

k2 − k2
0

(A9)

in (A8), ΨB(r, r′) can be cast as:

ΨB
(
r, r′

)
=

j

4π2|r−r′|

∫ +∞

−∞

∫ η

0

kξ

2
e−

ξ2

4 (k2−k20)ejk|r−r′|dkdξ︸ ︷︷ ︸
I

+
e−jk0|r−r′|

4π|r− r′|

(A10)
Since the integrand of (A10) is continuos and bounded in the integra-
tion domain, the conditions to swap the order of integration are met.
I is integrable in closed form with respect to k yielding:

I = − 1
2π3/2

∫ η

0
e

(
ξ2k20

4 − |r−r′|2
ξ2

)
dξ
ξ2

(A11)

Substituting µ =
1
ξ

we get

I = − 1
4π
· 2√

π

∫ +∞

1/η
e
k20
4µ2−|r−r′|2µ2

dµ
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= − ejk0|r−r′|

4π
· 2√

π

∫ +∞

1/η
e
−
(
jk0
2µ +|r−r′|µ

)2

dµ (A12)

We make the substitution τ = |r − r′|µ + jk0/ 2 µ; dµ =
1

2|r− r′|(
1± τ√

τ2 − 2jk0|r− r′|

)
dτ so that I reduces to

I = − 1
4π

ejk0|r−r′|

2|r− r′| ·
2√
π

∫ +∞

|r−r′|/η+jk0η/2
e−τ

2
dτ+

· ± 1
4π

ejk0|r−r′|

2|r− r′| ·
2√
π

∫ +∞

|r−r′|/η+jk0η/2

e−τ
2
τ√

τ2−2jk0|r−r′|
dτ︸ ︷︷ ︸

I1

(A13)

By definition
2√
π

∫ +∞

z
e−t

2
dt = 1−Φ(z) , being Φ the error function.

We have:

2√
π

∫ +∞

|r−r
′ |/η+jk0η/2

e−τ
2
dτ = 1− Φ

(
|r− r

′ |/η + jk0η/2
)
. (A14)

To calculate the integral I1 we make the additional substitution τ2−
2jk0|r− r′| = Ω2; τdτ = ΩdΩ that yields

I1 = ± 1
4π

e−jk0|r−r′|

2|r− r′| ·
2√
π

∫ β

α
e−Ω2

dΩ (A15)

where (α, β) can be either (−∞,−|r− r′|/η + jk0η/2) or (|r− r′|/η
−jk0η/2,+∞) and the integral will give the same result,1−Φ(|r−r′|/η
−jk0η/2) . Finally I takes the expression

I = − 1
4π

e+jk0|r−r′|

2|r− r′|
[
1− Φ

(
|r− r′|/η + jk0η/2

)]
± 1

4π
e−jk0|r−r′|

2|r− r′|
[
1− Φ

(
|r− r′|/η − jk0η/2

)]
(A16)

In order to solve for the sign ambiguity, we note that for k0 → 0 the
sign “+” leads to the trivial solution (I = 0) . The sign “−” produces
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the solution − 1
4π|r− r′|

[
1− Φ

(
|r− r′|/η

)]
which is consistent with

the result of the (A11) when k0 → 0 . Finally the solution Ψ can be
cast as follows

Ψ(r) = ΨA(r)−ΨB(r) = − 1
8π|r− r′|e

+jk0|r−r′|Φ
(
|r− r′|/η + jk0η/2

)
− 1

8π|r− r′|e
−jk0|r−r′|Φ

(
|r− r′|/η − jk0η/2

)
+

1
4π|r− r′| cos

(
k0|r− r′|

)
(A17)
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