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Abstract–In this paper, we introduce a modified FDTD model in or-
der to investigate the behavior of the induced voltage of a non-uniform
transmission line (TL) excited by lumped voltage sources or external
electromagnetic wave. The parameters to be taken into account for
this specific coupling phenomenon are explicitly analyzed and the af-
fection on the behavior of the induced voltage is discussed in detail. To
confirm the validity of this model, results obtained by this model, for
two typical transmission line configurations, are compared to results
obtained by other models, already published in the literature. Fi-
nally, several numerical calculations of the line responses are provided
for non-uniform TL’s that can be present in practical configurations.
These results indicate that a configuration slightly different from the
uniform one can cause large discrepancies on the termination voltages
of the TL.
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1. INTRODUCTION

The analysis of the response of a transmission line (TL) excited by
lumped sources along its conductors has been extensively investigated
in the past [1, 2]. Also, numerical as well as analytical models have
been introduced in the literature for the analysis of the interaction
between an electromagnetic field and a multiconductor transmission
line, both in frequency [3–6] and time [7–10] domains. Some of the
main models used for the solution of the problem are the Singularity
Expansion Method (SEM), the Method of Moments (MOM), the Time
Domain Frequency Domain model (TDFD), and the Finite Difference
Time Domain (FDTD) technique.

The FDTD method is a general way of directly obtaining the time
domain response of a transmission line by discretizing the transmission
line equations in position along the line and in time, and solving the
equations in a leapfrog fashion. This technique has certain advantages
and drawbacks when compared to other methods. The main advantage
of FDTD technique is that it is quite easy to code. Furthermore, a gen-
eralized code can include transmission line losses, as well as non-linear
termination load characteristics. On the other hand, this procedure
cannot be used for analysis of lines with frequency-dependent parame-
ters. Finally, care should be exercised to choose the proper number of
spatial and temporal cells, in order to obtain accurate results.

The assumption made by all authors cited in references [1–10] is that
the transmission line is uniform. This condition can be relaxed if either
the transmission line conductors are not parallel to each other or they
are made of different materials. Similar occasions can be faced in con-
figurations consisting of a line above an inhomogeneous ground plane.
In [11], an investigation of the behavior of field-excited, non-uniform
transmission lines is presented. The method used for the determina-
tion of termination voltages in the time domain is the well-known Fast
Fourier Transformation (FFT) method.

In this paper, the development of a modified FDTD code is in-
troduced for the evaluation of termination voltages of a non-uniform
transmission line for both field-excitation and lumped source excita-
tion. The numerical results obtained by the code are compared to those
presented in the literature to validate the correctness and accuracy of
the model. Furthermore, this model is used for the computation of
the voltage induced on non-uniform TL configurations frequently met
in practical cases. Some useful remarks obtained by this study are
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discussed below.

2. FDTD RECURSION RELATIONS FOR UNIFORM TL

For simplicity sake, the following development is based on the below
mentioned assumptions:

1. The propagation mode of the line is TEM.
2. The transmission line conductors have perfect conductivity.
3. The surrounding medium is lossless.

The first condition is equivalent to the assumption that the cross-
sectional dimensions of the line are much smaller than the shortest
wavelength of the wave. In most practical cases, the transmission line
is embedded in an inhomogeneous medium, and thus the waves that
propagate along the line cannot be considered as being TEM. More-
over, even if the surrounding medium is homogeneous, the transmission
line, due to per-unit-length losses, cannot support TEM propagation.
Conditions two and three are set in order to be able to define the trans-
mission line propagation as TEM (or quasi-TEM) and thus describe
the transmission line behavior in terms of circuit-theory parameters.
Under these conditions, the transmission line can be described by a
system of two partial differential equations in the time domain (trans-
mission line equations). A final assumption that has to be made is
that the per- unit-length inductance and capacitance of the transmis-
sion line is considered as frequency- independent.

2.1 Uniform Transmission Line Excited by Lumped Sources
at Its Terminations

In order to illustrate the method, consider a two-conductor, loss-
less transmission line of length L and distance of separation between
the conductors equal to d , as depicted in Figure 1. The TEM mode
model of a uniform, lossless transmission line can be expressed by the
following homogeneous differential equations [2] in time domain:

∂

∂z
V (z, t) + l

∂

∂t
I(z, t) = 0 (1a)

∂

∂z
I(z, t) + c

∂

∂t
V (z, t) = 0 (1b)

where l and c is the per-unit-length inductance and capacitance of
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Figure 1. A uniform transmission line excited by lumped voltage
sources.

the TL, respectively and V (z, t), I(z, t) is the line voltage and current
along the TL, respectively.

The FDTD technique seeks to approximate the derivatives in (1a),
(1b) with regard to the discrete solution points defined by spatial and
temporal cells. According to this notation, the finite difference repre-
sentation of the spatial and temporal derivative of a function f(z, t)
is written as:

∂

∂z
f(z, t) =

fn+1
k+1 − fn+1

k

∆z
(2a)

∂

∂t
f(z, t) =

fn+1
k − fnk

∆t
(2b)

To incorporate the above equations into the FDTD code, we divide
the line into KTot sections of length ∆z

(
∆z = L

KTot

)
, and the total

solution time into NTot segments of ∆t
(
∆t = Total Solution T ime

NTot

)
.

In order to insure second-order accuracy of the discretization we inter-
lace the KTot +1 voltage points and ktot current points as shown in
Figure 2.

Consequently, each voltage and adjacent current point is separated
in space and time by ∆z/2 and ∆t/2 , respectively. Substituting (2)
into (1), the finite difference approximation of (1) yields:

V n+1
k+1 − V n+1

k

∆z
+ l · I

n+3/2
k − I

n+1/2
k

∆t
= 0 (3a)
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Figure 2. The spatial discretization of voltages and currents along the
transmission line.

I
n+1/2
k − I

n+1/2
k−1

∆z
+ c · V n+1

k − V n
k

∆t
= 0 (3b)

where V n
k , Ink are defined as:

V n
k = V ((k − 1) ·∆z, n ·∆t) (4a)

Ink = I((k − 1/2) ·∆z, n ·∆t) (4b)

Equations (3a), (3b) are solved by extracting the terms V n+1
k , I

n+3/2
k :

V n+1
k = V n

k −
∆t

c ·∆z
·
(

I
n+1/2
k − I

n+1/2
k−1

)
(5a)

I
n+3/2
k = I

n+1/2
k − ∆t

l ·∆z
·
(
V n+1
k+1 − V n+1

k

)
(5b)

The above equations can be solved in a “bootstrapping” fashion [2].
At each time step n , the voltages along the line are computed in terms
of the previous voltage and current values (starting with an initially
relaxed line at t = 0) . Afterwards, the currents along the line are
evaluated for the next temporal cell. The final step for the determina-
tion of the FDTD code is the incorporation of terminal constraints of
the TL.

Under the assumption of TEM propagation along the TL mentioned
above, the lumped resistive loads at the two ends of the TL can be
characterized as:

V (0, t) = VS −RS · I(0, t) (6a)
V (L, t) = VL + RL · I(L, t) (6b)
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where VS , VL are the lumped voltage sources at the near- and far-end
of the TL. Incorporating the latter equations in (5a), the final FDTD
code is obtained. For each time step n , the voltage at the near- and
far-end of the TL is evaluated by [12]:

V n+1
1 =

1(
RS ·

c

2
· ∆z

∆t
+

1
2

)

·
{(

RS ·
c

2
· ∆z

∆t
− 1

2

)
· V n

1 −RS · In+1/2
1 +

V n+1
S +V n

S

2

}
(7a)

V n+1
KTot+1 =

1(
RL ·

c

2
· ∆z

∆t
+

1
2

)

·
{(

RL ·
c

2
· ∆z

∆t
− 1

2

)
· V n

KTot+1+RL · In+1/2
KTot +

V n+1
L + V n

L

2

}

(7b)

Also, the voltage and current at each intermediate spatial segment is
evaluated by equations (5a), (5b). This procedure goes on for each
time cell until final solution time is reached.

2.2 Uniform Transmission Line Excited by Electromagnetic
Plane Wave

Once again, consider the transmission line depicted in Figure I with
voltage sources VS , VL removed. The transmission line is illuminated
by a coplanar, vertically polarized plane wave having angle of incidence
θ , as shown in Figure 3. Adopting the total field approach, the coupled,
first-order, partial, non-homogeneous differential equations for the line
voltage and line current are expressed as [7, 9]:

∂

∂z
V (z, t) + l

∂

∂t
I(z, t) = VF (z, t) =

∂

∂t
BN (z, t)

= − ∂

∂z
ET (z, t) + EL(z, t) (8a)

∂

∂z
I(z, t) + c

∂

∂t
V (z, t) = IF (z, t) = −c

∂

∂t
ET (z, t) (8b)

where

ET (z, t) =
∫ d

0
Einc
X · dx (9a)
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EL(z, t) = Einc
Z (x = d, z, t)− Einc

Z (x = 0, z, t) (9b)

and Einc
X , Einc

Z are the x- and z-components of the incident electric
field vector.

Figure 3. A uniform transmission line excited by an external electro-
magnetic wave.

As it is obvious from Figure 3, each spatial segment of the TL is
excited by the external electromagnetic wave in different time instants.
In other words, the right-hand side variables of equation (8a) and (8b)
must be expressed in terms of unit step function, in order to predict
the time-delay of the excitation field impinging the transmission line.
Assuming the initial time instant t = 0 being fixed when the plane
wave arrives at the point of coordinates (z, x) = (0, d) , an arbitrary
segment (z, x) = ((k − 1)∆z, x) will be excited with a time-delay
of tx + tz . It can be easily proven, from fundamental trigonometric
analysis, that tx, tz can be written in the following form:

tx =
[(d− x) · cos φ + z · sin φ] · cos2 φ

uc
(10a)

tz =
[(d− x) · cos φ + z · sin φ] · sin2 φ

uc
(10b)
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where z = (k − 1)∆z, x ∈ [0, d] , and uc is the speed of light.
Thus, the components of incident electric field vector, with respect

to the angle of incidence, can be expressed as:

Einc
x (x, z, t) = �Einc · �x = Einc(t− tx − tz) · cos θ · u(t− tx − tz) (11a)

Einc
z (x, z, t) = �Einc ·�z = Einc(t− tx − tz) · sin θ · u(t− tx − tz) (11b)

As mentioned in the previous section, the final step is the implementa-
tion of terminal conditions into FDTD algorithm. The current at the
near-end of the transmission line is denoted as IS and at the far-end
as IL (Figure 3). The terminal conditions are:

InS = −V n
1

RS
(12a)

InL = −
V n
KTot+1

RL
(12b)

It is of great importance to mention that, despite intermediate ones,
the termination currents are evaluated at the same temporal cell of
voltages.

Substituting equations (2), (4), (9)–(12) in (8), yields the final form
of FDTD code. For each temporal cell:

V n+1
1 =

1

1 +
∆t

c∆zRS

·
{(

1− ∆t

c∆zRS

)
V n

1

− 2 ·∆t

c∆z
I
n+1/2
1 −

(
En+1
T,1 − En

T,1

)}
(13a)

V n+1
k = V n

k −
∆t

c ·∆z
·
(

I
n+1/2
k − I

n+1/2
k−1

)
−

(
En+1
T,k − En

T,k

)
(13b)

V n+1
KTot =

1

1 +
∆t

c∆zRL

·
{(

1− ∆t

c∆zRL

)
V n
KTot+1

+
2 ·∆t

c∆z
I
n+1/2
KTot −

(
En+1
T,KTot+1 − En

T,KTot+1

)}
(13c)

I
n+3/2
k = I

n+1/2
k − ∆t

l ·∆z
·
(
V n+1
k+1 − V n+1

k

)
− ∆t

l ·∆z
·
(

En+1
T,k+1−En+1

T,k

)
+

∆t

2 · l ·
(

E
n+3/2
L,k −E

n+1/2
L,k

)
(13d)
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Figure 4. Arbitrary configuration of a non-uniform transmission line.

The evaluation procedure is similar to the one described in the previous
section.

3. MODIFICATIONS ON FDTD CODE FOR
NON-UNIFORM TL

Due to the general formulation of the FDTD code developed in the
previous section, the alterations in terminal voltages caused by a non-
uniform transmission line can be anticipated. Consider a transmis-
sion line where the height of its upper conductor is a function of
z (d = d(z)) . We now divide the lower (uniform) conductor of the
transmission line in KTot spatial segments (Figure 4). The segments
at the upper conductor are assumed as having equal length (∆z) and
being parallel to z-axis. These assumptions can be set if no steep vari-
ation of the inclination of the TL exists. The differences inserted in
the non-uniform configuration, compared to the uniform one, are:

a. the arrival time of incident plane wave at each spatial segment
strongly depends on d(z),

b. the per-unit-length inductance and capacitance of the transmission
line are no longer constant and can be expressed as a function of
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d = d(z) [2]:

c =
2πε0

ln
(

d2

a1a2

) (14a)

l =
µ0

2π
ln

(
d2

a1a2

)
(14b)

where a1, a2 is the radius of the upper and lower conductor,
c. The propagation velocity, uTL = 1√

l·c , along the transmission line,

is constant. On the contrary, characteristic impedance, Z0 =
√

l
c ,

is a function of d.

With the aforementioned notations in mind, we can readily derive
the modified FDTD code for both lumped source and plane wave ex-
citation, by applying (14) into (5), (7) and (13), respectively.

4. PRACTICAL EXAMPLES AND NUMERICAL
RESULTS

Before proceeding with the verification of the modified FDTD model
presented in this paper, it is of great importance to notice some serious
remarks related to the computational procedure of the model and the
conditions to be fulfilled in order to insure stability and accuracy of
the model:

1. The basic condition for the set of recursion relations to be stable is
the Courant condition [7]:

∆t ≤ ∆z

u
(15a)

which, equivalently, can be written as:

NTot ≥ KTot · u · Final Solution T ime

TL Length
(15b)

where u is the phase velocity of propagation of the wave.
2. In order to achieve computation accuracy, the spatial discretization

is chosen such that each spatial segment ∆z is electrically small
compared to the largest significant spectral component of the exci-
tation waveform [12].



Validation of a modified FDTD method 321

3. The Total Solution Time is chosen such that permits the complete
“temporal deployment” of the coupling phenomenon.

4. For the particular case of field excitation, the transverse incident
field sources, ET (z, t) , are to be evaluated at the voltage positions,
whereas the longitudinal field sources, EL(z, t) , are to be evaluated
at the current positions [ 13]:

En
T,k = ET ((k − 1)∆z, n∆t) (16a)

En
L,k = EL((k − 1/2)∆z, n∆t) (16b)

On the basis of previous notation, terminal currents, IS , IL , are
collocated ∆z/2 distance from adjacent voltages and are evaluated
for the same temporal cell (equations (12a), (12b)).

To verify the computed induced voltages at both ends of a non-
uniform transmission line obtained by FDTD method presented in this
paper, we compare two typical configurations, already published in the
literature. Moreover, the evaluated induced termination voltages for
the case of nonuniform TL are compared to those obtained for uniform
TL with similar characteristics.

Example 1

We consider a lossless, two-conductor transmission line excited by
a lumped voltage source at its near-end VS(t) = 30 V, VL(t) = 0 V,
with termination loads RS = 0 Ω, RL = 100 Ω , as described in [12].
The total length of the line is equal to L = 400 m . For the case
of a uniform transmission line, the per-unit-length inductance and ca-
pacitance are set equal to l = 2.5 · 10−7 H/m, c = 10−10 F/m and
d = 6.5 · 10−2 m, a1 = a2 = a = 5 cm. For the case of non-uniform
TL, the distance of separation between the upper and lower conductor
is given by d(z) = (6 + 0.03z) · 10−2 and the corresponding per-unit-
length capacitance and inductance can be evaluated from equations
(14a), (14b). The transmission line is discretized in 50 spatial segments
of equal length, and the total solution time (20-µsec) is discretized into
1000 temporal cells in order to fulfil Courant condition (15b). The ob-
tained results for the induced voltage at the far-end of the transmission
line are depicted in Figure 5. The corresponding results for uniform
TL are identical to those presented in [12]. As it is readily shown in
Figure 5, the rise time for the case of non-uniform transmission line is
noticeably smaller than the one presented for uniform TL. Moreover,
it is seen that in the non-uniform case, the convergence to expected



322 Trakadas and Capsalis

constant value of 30 V is more rapid. These two conclusions can be
justified by the notice that as z increases the per-unit-length induc-
tance and capacitance of the non-uniform TL, being a function of d ,
are increasing and decreasing, respectively.

Figure 5. The induced voltage at the far-end of the uniform and non-
uniform transmission line as described in Example 1.

Example 2

As a second example, we now consider the transient response be-
havior of the induced voltages on uniform/non-uniform TL, excited by
an external electromagnetic wave, as shown in Figures 3, 4. For the
case of a uniform transmission line, the characteristics of the excita-
tion electric field and of the TL are as follows: VS = VL = 0 V, RS =
RL = 159 Ω, L = 30 m, a1 = a2 = a = 1.5 mm, d = 30 cm and
the impinging wave is taken to be of the following form: Einc(t) =
1.05 · (exp[−4 · 106t]− exp[−4.76 · 108t]) V/m, with angle of incidence
θ = 45◦ . Similarly, the characteristics of non-uniform TL are the same
as in the case of uniform TL with the only difference that the TL
height linearly increases from 10 cm to 50cm, as described in the fol-
lowing equation: d(z) = (10+1.33z) ·10−2 m. In Figure 6, the Fourier
transformation of Einc(t) is depicted. The largest significant spectral
component can be considered as being f = 109 Hz . Hence, in order to
fulfill the second remark, ∆z(≤ λ/10) must be equal to 0.3 m. Hence,
KTot must be equal to 100 and from equation (15b), Ntot = 500 ,
as Final Solution Time is 0.5 µsec. The results for the far-end induced
voltage are shown in Figure 7 (the case of non-uniform TL gives re-
sults identical to those presented in [11], evaluated according to Time
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Domain to Frequency Domain method). Although the characteristics
of the transmission line as well as the characteristics of external plane
wave are quite similar (or identical) for both cases, the variations be-
tween the two curves observed in Figure 7 are large. Three are the
main reasons for these differences. The first one is discussed in the
previous example and is related to the strong dependency of per-unit-
length inductance and capacitance of the TL. The second one is that
both perpendicular and longitudinal component of the external elec-
tromagnetic wave is affected due to non- uniformity if the line. The
last reason is that, as z increases, the wave travels larger distances in
order to impinge to the lower conductor.

Figure 6. Time-domain and Frequency-domain representation of ex-
ternal electromagnetic wave (Example 2).

Figure 7. The induced voltage at the far-end of the uniform and non-
uniform transmission line as described in Example 2.
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A final remark concerning both examples is that the assumption of
constant velocity of propagation along the transmission line seems to
be in force; discontinuities of the waveforms are observed at the same
time instant, especially for the second example.

In order to make clear the strong dependency of line response due to
non-uniformity of the TL, two comparison studies are presented below
(both employed for field-excited TL’s):

Comparison Study 1

The far-end voltage response of a linearly ascending (d(z) = (10 +
1.33z) · 10−2 m) transmission line, as defined in the previous section,
and a linearly descending (d(z) = (50− 1.33z) · 10−2 m) transmission
line, depicted in Figure 8, are compared to the

uniform TL (d = 30 cm), also defined in the previous section. Al-
though the inclination of both non-uniform lines is small compared to
their length (40 cm in a total length of 30 m), the voltage responses are
far from similar (Figure 9). As it can be readily observed, not only the
rise times of the transient response of the TL’s are strongly dependent
on the alteration of per- unit-length inductance and capacitance, but
the peak value of the induced voltage, as well.

Figure 8. The configuration of non-uniform TL examined in compar-
ison study 1.

Comparison Study 2

As a final comparison, the transmission lines having the form shown
in Figure 10 are compared to the uniform transmission line defined
previously. The transmission line with the form of d(z) = (10 + 40·



Validation of a modified FDTD method 325

Figure 9. The comparison of far-end voltage of the transmission line
configurations presented in comparison study 1.

Figure 10. The configuration of non-uniform TL examined in com-
parison study 2.

sin
[
π
30 · z

])
·10−2 m is hereinafter denoted as “Sinus TL” and the trans-

mission line with the form of d(z) =
(
50 + 40 · cos

[
π
30 · z + π

2

])
·10−2 m

is denoted as “Cosinus TL”, as well. In Figure 11, the line responses
are plotted, showing great differences between the configurations. This
shape of transmission line can be faced in commercial power delivery
systems, where an aboveground line is rarely straight and uniform due
to periodic supports (towers) and the line can meander around to con-
form to the earth topography. With minor modifications on the TL



326 Trakadas and Capsalis

Figure 11. The comparison of far-end voltage of the transmission line
configurations presented in comparison study 2.

configuration presented in this paper and on the FDTD algorithm, this
model can estimate the voltage induced on an overhead line by a high
altitude nuclear electromagnetic pulse (HEMP) or lightning-induced
overvoltages in power lines. The interested reader can refer to [15–18]
for further information on this subject. It is mentioned that the wave-
form of external electromagnetic pulse used in this paper is similar to
the “Bell Laboratory Waveform” as described in [19] and being used
by several authors [20, 21] in order to calculate the transient response
of a TL over a ground plane. The important conclusion arising from
the observation of Figure 11 is that an additional parameter must
be taken into account when dealing with the coupling phenomenon
present when a TL is illuminated by an external E/M wave; that is
the non-uniformity of the TL configuration. It is of great importance
to mention that if this model is used to predict the HEMP-induced
voltage on overhead lines over the earth, greater differences must be
expected amongst the configurations, as the amplitude of the HEMP
is taken equal to about 50 kV/m, according to [19] .

A final remark arising from the observation of Figures 9 and 11 is
that according to the employed coupling model, both the vertical and
horizontal components of the electric field are of great importance.
However, from the definition of the x- and z-component of electric
field vector, one can readily note that while the contribution of the
vertical field to the total voltage is of positive polarity, the horizontal
field coupling may result in a contribution of positive, bipolar, or nega-
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tive polarity [15]. This is due to the dependency on the configuration of
the transmission line, the angle of incidence of external E/M wave and
other important characteristics, such as the termination load values
and the distance of separation between the transmission line conduc-
tors.

5. CONCLUSION

The FDTD technique has become popular due to its versatility and the
ability to handle complex structures. In this paper, a modified FDTD
algorithm presented in order to investigate the effect on the voltages
induced on several non-uniform transmission-line configurations, due
to lumped source or external wave excitation. The concept presented
in this paper, valid for non-uniform transmission lines with frequency-
independent parameters, is implemented into the general formulation
of FDTD algorithm. The validation of this model confirmed by com-
paring the results obtained by our code with results obtained by other
time domain models, already published in the literature. It is shown
that the choice of FDTD model to calculate the transient response of
a TL excited by an external E/M wave is useful as it permits one to
incorporate, in an easy to code manner, several modifications related
to the configuration of the TL, avoiding to solve analytically the set
of integro-differential equations describing the coupling phenomenon.
Some useful remarks on the characterization of induced voltages are
discussed. The basic one is that the exact positioning of the TL is of
great importance as slight inclinations can result in great alterations on
the voltage induced in the TL. We must notice that this model can be
easily used in multiconductor transmission line configurations. Also,
although not presented in this paper, this model can be modified in
order to predict transmission line losses as well as non-linear behavior
of termination loads [13, 14].
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