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Abstract—Aspects of the geometric discretization of electromagnetic
fields on simplicial lattices are considered. First, the convenience of
the use of exterior differential forms to represent the field quantities
through their natural role as duals (cochains) of the geometric
constituents of the lattice (chains = nodes, edges, faces, volumes)
is briefly reviewed. Then, the use of the barycentric subdivision
to decompose the (ordinary) simplicial primal lattice together with
the (twisted) non-simplicial barycentric dual lattice into simplicial
elements is considered. Finally, the construction of lattice Hodge
operators by using Whitney maps on the first barycentric subdivision
is described. The objective is to arrive at a discrete formulation of
electromagnetic fields on general lattices which better adheres to the
underlying physics.
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1. INTRODUCTION

Like most equations of physics, Maxwell’s equations are extremely rich
in symmetries and (hence) conservation laws. In the continuum, many
conservation laws follow directly from invariances of the Lagrangian
(Noether symmetries) such as energy or momentum conservation, while
others have an inherent topological aspect, such as magnetic charge.
However, when Maxwell’s equations are discretized on a lattice, a
number of symmetries of the continuum theory are modified or broken.
Still, many conservation laws may be trivially preserved on a discrete
setting. This is because they often relate a quantity on certain region of
space to an associated quantity on the boundary of the region. Because
the boundary is a topological invariant, such conservation laws should
not depend on the metric of the space (i.e., they are invariant under
homeomorphisms). As a result they are also scale invariant and should
not depend (in a consistent discrete model of the theory) whether
a continuum limit is taken. A natural mathematical language that
explore this aspect is the calculus of exterior differential forms [1–45]
and associated algebraic topological structures [1–12, 15–21, 23–29, 32,
35–38, 40–45].

This is partly because, when cast in such language, Maxwell’s
equations are factorized into a purely topological (i.e., metric-free) part

dE = − ∂

∂t
B (1)

dH =
∂

∂t
D + J (2)

dB = 0 (3)
dD = ρ (4)

and a metric dependent part

D = 
εE (5)
B = 
µH (6)
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In the above, E and H are electric and magnetic field intensity 1-forms,
D and B are electric and magnetic flux density 2-forms, J is the electric
current density 2-form, and ρ is the electric charge density 3-form. The
metric-free operator d is the exterior derivative, which simultaneously
plays the role of the grad, curl, and div operators of vector calculus,
distilled from their metric structure. Constitutive parameters of a
given medium in Eqs. (5) and (6) relate the 1-forms E, H to the 2-
forms D, B and are given in terms of the so-called Hodge operators, 
ε
and 
µ, which also include all metric information [13, 26, 28, 32, 33,
36, 38–40, 48].

This is unlike the vector calculus formalism, where metric
and topological structures are intertwined in the equations. As
alluded, such factorization has important consequences (even in the
topologically trivial manifolds of interest) if the objective is to arrive
at a consistent discretization scheme for Maxwell’s equations in general
lattices. There are many reasons for that. First, the topological
equations (1)–(4) admit an exact discrete spatial rendering [40].
Therefore, many theorems (such as charge conservation alluded before)
are automatically fullfilled after discretization, without the need to
involve metric concepts. Second, because the metric is completely
encoded into Eqs. (5) and (6), the treatment of curved boundaries and
material interfaces [also entirely encoded in Eqs. (5) and (6)] can be
done in a more systematic manner, without affecting, e.g., conservation
laws related to the topological equations. Third, once discretized,
the topological (spatial) part of the equations often comprises integer
arithmetic only and are more efficiently handled by a computer if a
priori recognized as such1.

Besides this natural factorization, the language of forms also
sheds light in a number of issues faced by various discretization
methods. Among them are rationale for the use of edge (Whitney)
elements in finite element methods [19, 23, 35] (related with the correct
interpolation of the electric and magnetic field intensities 1-forms E
and H) and for the dual grid construction in finite difference and finite
volume methods [10, 32, 40] (related with the concept of external and
internal orientations of differential forms).

1.1. Outline

In this paper, we first review the terminology and basic concepts
of the spatial discretization of Maxwell’s equations using discrete
differential forms (cochains), with special emphasis on the factorization
1 Exceptions to this last point are lattices involving some sort of spatial interpolation for
the boundary stencil, such as in many subgridding or locally conformal grid situations.



174 Teixeira

of the topological and metric problems. We then discuss more
specific geometric aspects of the discretization using a simplical
primal lattice and a non-simplicial barycentric dual lattice as starting
point, followed by a barycentric subdivision (decomposition) of both
these lattices. Motivated by the results in [45] and through the
representation of the cochains (electromagnetic fields) via Whitney
forms, the first barycentric subdivision is then used as the actual
tool for discretization. The objectives are to arrive at a coordinate-
free, discrete version of Maxwell’s equations for general lattices with
fewer ad-hoc interpolatory rules, and to have the geometric structure of
the continuum theory mirrored, to a maximum extent, by its discrete
counterpart.

2. DISCRETIZATION OF THE TOPOLOGICAL
EQUATIONS

2.1. Simplicial Lattices and Complexes

Simplicial lattices will be considered here not only because of their
flexibility in dealing with complex geometries, but also because they
are more fundamental in the sense that any lattice can be built by
assembling simplicial elements. For our purposes, the term simplicial
lattice will refer to a simplicial complex embedded on a Euclidean, E3

space (i.e., with a metric structure associated to it).
For completeness, we will next briefly sketch the definition of

simplicial complex. More detailed descriptions can be found elsewhere,
e.g., [1, 4, 5, 6, 7, 40, 45].

Given x0, x1, ...xM affine points in an abstract space, a M -simplex,
σM , is the set of points (convex hull) given by x =

∑M
i=0 λixi where λi

are the barycentric coordinates such that
∑M
i=0 λi = 1 and λi ≥ 0. We

write σM = [x0, x1, ...xM ]. In a three-dimensional space, a 0-simplex
is a point, a 1-simplex is an edge (line segment), a 2-simplex is a face
(triangle), and a 3-simplex is a volume (tetrahedron). An oriented
M -simplex changes sign under a change of orientation, i.e., if σM =
[x0, x1, ...xM ] and a permutation of the indices is carried out, then
[xτ(0), xτ(1), ...xτ(M)] = (−1)τσM , where τ denotes the total number
of permutations needed to restore the original index order (odd or
even permutations). The j-face of a simplex is the set defined by
λj = 0. The faces of a 1-simplex [x0, x1] are the points [x0] and [x1]
(0-simplices), the faces of a 2-simplex [x0, x1, x2] are its three edges,
i.e., [x0, x1], [x1, x2], and [x0, x2] (1-simplices), and so forth. We denote
the simplex σMi as being a face of the simplex σM

′
j , with M < M ′, by
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σMi ⊂ σM
′

j .
A simplicial complex χ is a collection of simplices such that (i)

for all σM belonging to χ, its faces also belong to χ, and (ii) for
any two simplices their intersection is either empty or it is a common
face of both. We note that the concept of simplicial complex (and of
barycentric coordinates) is independent of a metric and therefore will
constitute the general structure over which the discretized version of
Eqs. (1)–(4) will be cast. Only Eqs. (5) and (6) will make use of the
metric structure to be introduced a posteriori. When the elements
are not necessarily simplicial (e.g, Yee’s tetrahedral cells), we have a
cell complex, and its elements are called cells. A simplicial complex is
therefore a particular case of a cell complex.

In the continuum, a natural duality exists between exterior
differential forms and regions of integration (points, lines, surfaces,
volumes) [1, 2, 13, 15, 23, 40, 60]. Indeed, integrals can be though
as a pairing (contraction) of differential forms with these geometrical
objects which gives a scalar as a result. On a lattice or cell complex,
the geometrical objects will be formal sums of simplices, called chains.
A M -chain is a linear combination of M -simplices in χ through ΩM =∑
i αiσ

M
i ∈ χ, with coefficients αi over the reals (for our purposes).

From this definition, a 0-chain is a linear combination of points, a 1-
chain is a linear combination of edges (lines), etc. A chain is always
one of these types (there are no mixed chains) and the M -simplices σM
(or M -cells in general) form a basis for the space of M -chains, CM .

2.2. Pairing and Incidence Matrices

Given an arbitrary simplicial complex, Eqs. (1)–(4) are easily
discretized through a pairing with corresponding elements of two
complexes χ and χ̃, and by using the adjoint of the exterior derivative
d. On a lattice, the operator d is referred as the coboundary operator
whose adjoint is called the boundary operator ∂ [32, 40, 45]. The
boundary operator carries its usual intuitive meaning [14]. Eqs. (3)
and (4) are trivially verified on a lattice from the nilpotency of the
boundary operator, ∂2 = 0 (i.e., the topological fact that the boundary
of a boundary is zero). The topological Eqs. (1)–(4) on a complex are
written as

∑
j

βij〈σ1
j , E〉 = − ∂

∂t
〈σ2
i , B〉 (7)

∑
j

β̃ij〈σ̃1
j , H〉 = − ∂

∂t
〈σ̃2
i , D〉+ 〈σ̃2

i , J〉 (8)
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∑
j

γij〈σ2
j , B〉 = 0 (9)

∑
j

γ̃ij〈σ̃2
j , D〉 = 〈σ̃3

i , ρ〉 (10)

The incidence matrices αij , βij , γij (and α̃ij , β̃ij , γ̃ij) in the above
equations are the discrete representation of the operator ∂ in a
given complex χ (and χ̃). The incidence matrices are operationally
defined by the action of the boundary operator on a basis of 1-, 2-
and 3-chains (i.e., simplices), {σ1

i }, {σ2
i } {σ3

i }, respectively, through
∂σ1

i =
∑
j αijσ

0
j , ∂σ

2
i =

∑
j βijσ

1
j , ∂σ

3
i =

∑
j γijσ

2
j , ∂σ̃

1
i =

∑
j α̃ij σ̃

0
j ,

∂σ̃2
i =

∑
j β̃ij σ̃

1
j , and ∂σ̃3

i =
∑
j γ̃ij σ̃

2
j [40]. These matrices are the

discrete counterparts to the grad, curl, and div operators, respectively,
distilled from their metric structure. In the case of simplicial complexes
(or any cell complex where the definition of the boundary stencil does
not involve spatial interpolations), the elements of those matrices are
integers having the values ±1 (depending on the relative orientation)
when σ

(k−1)
j ∈ ∂σki , and zero otherwise (hence it involves only integer

arithmetic).
The incidence matrices should obey a number of (consistency)

properties as discussed, e.g., in [40]. These properties are important
to assure that key theorems of the continuum theory (e.g., charge
conservation, reciprocity) are preserved in the discrete setting.
Violation of those properties often result in clear nonphysical behavior
and harmful numerical artifacts such as unconditional instabilities.
Because any metric structure is still irrelevant at this level of
description, these properties are classified as topological consistency
properties. For simple, regular lattices, they are almost automatically
fulfilled in the most usual discretization schemes. However, in lattices
with more involved topological structures, e.g., those involving some
form of subgridding or conformal gridding, special care should be taken
to avoid violation of these properties under naive discretization schemes
[40].

The discrete fields in Eqs. (7)–(10), counterpart to the differential
forms fields in Eqs. (1)–(4), are called cochains to stress that they
belong to the dual space of the chains of the cell complex, i.e.,
CM . Cochains therefore constitute the discrete representation of the
electromagnetic fields. The map from the space of M-forms ΦM to the
space of M-cochains, CM is called the de Rham map, Rh : ΦM → CM .
In the following, we will often use the terms cochains and forms
interchangeably to reflect that cochains are just discrete differential
forms.
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2.3. Complexes and Orientation

The choice of two distinct complexes, χ for Eqs. (7) and (9) and
χ̃ for Eqs. (8) and (10), is not arbitrary. Instead, it is rooted on
distinct geometrical properties of the differential forms in Eqs. (1) and
(3) versus those in Eqs. (2) and (4), and related to the concept of
orientation [32, 40]. This is because while E and B (associated with
energy) possess internal orientation (ordinary forms or cochains), D
and H (associated with sources J and ρ) possess external orientation
(twisted forms or cochains) [3, 40]. Because of this difference on
geometric properties, they are associated with different complexes
inheriting these two types of orientation (i.e., ordinary forms to a
ordinary complex, and twisted forms to a twisted complex). This is
indeed the geometrical reason behind the dual lattice construction in
many finite volume and finite difference methods [32]. Here, we will
choose the simplicial primal complex as the ordinary complex and the
dual cell complex as the twisted complex. The reciprocal choice could
be made as well.

3. DISCRETIZATION OF THE METRIC EQUATIONS

The discretization of the topological equations provide a counterpart to
the continuum equations, Eqs. (1)–(4). In contrast, the discretization
of the metric equations provides an approximation of the continuum
equations, Eqs. (5), (6). Error analysis may focus on the metric part
of the equations.

3.1. Discrete Hodge Operators

Equations (5) and (6) generalize the constitutive equations and
incorporate all metric information about a particular lattice. In the
continuum, the Hodge operators relate M -forms with (N −M) forms,
where N is the dimension of the space. It establishes an isomorphism
between these two spaces. In the discrete case, the discrete version of
the Hodge operators 
ε and 
µ establish a map between the M -cochains
on the primal, ordinary complex χ with the (N −M)-cochains on the
dual, twisted complex χ̃ and vice-versa, i.e.,

[
ε] : C1(χ)→ C2(χ̃)

〈σ̃2
i , D〉 =

∑
j

[
ε]ij 〈σ1
j , E〉 (11)

[
µ] : C1(χ̃)→ C2(χ)
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〈σ2
i , B〉 =

∑
j

[
µ]ij 〈σ̃1
j , H〉 (12)

Discrete Hodge operators approximate the continuum Hodge operators
[26]. Discretization methods usually yield procedural equivalent
‘Hodge operators’ through quadratures rules and interpolations. From
the material properties of the background medium and from the metric
properties of the lattice (or equivalently, of the manifold where the
lattice is assumed embedded), the discrete Hodge operators should
exhibit some key basic properties in order to lead to a consistent
(in the sense of [40]) discrete theory. For example, in the case of
a reciprocal medium and on the usual Euclidean space, the discrete
Hodge operators should necessarily be symmetric, positive definite
operators [40].

In order to obtain an explicit time-update scheme in the case of
a time domain method, at least one of the matrices in Eqs. (11),
(12) needs to be diagonal. In the Yee’s FDTD scheme, this is
achieved by the dual orthogonal hexahedral grid construction. For
an arbitrary simplicial lattice, however, this is not possible in general
(some particular tetrahedral and dual grid constructions, such as the
Delaunay-Voronoi grid [46], are mutually orthogonal by construction
and therefore produce diagonal Hodge operators at the expense
geometric flexibility). In general, the matrices in Eqs. (11) and (12)
will be only sparse, but not diagonal. In those cases however, it is still
possible to approximate those sparse matrices (at least one of them)
by diagonal matrices through mass lumping and arrive at an explicit
scheme [48].

3.2. Whitney and de Rham Maps

As mentioned before, it is possible to associate a differential M -
form field, ωM , to a cochain by using the de Rham map ΩM , Rh :
ΦM → CM . The ‘inverse’ process of associating ΩM to ωM is called
the Whitney map, Wh : CM → ΦM [26, 43]. Furthermore, from
the natural pairing between a chain in CM and a cochain in CM

(isomorphism between dual spaces), it is possible to further associate a
Whitney form to a given simplex, i.e., to define a map, ϕ : CM → ΦM .
Given a M -simplex, σM , this pivotal map (note that we will also call
it a Whitney map) is given by

ϕ(σM ) = ωM = M !
M∑
i=0

(−1)iλidλ0 ∧ ...dλi−1 ∧ dλi+1...dλM (13)
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where λi, i = 0, ..,M are the barycentric coordinates associated with
σM . Both de Rham and Whitney maps do not depend on a metric.
Note also that the de Rham and Whitney maps do not necessarily
commute, and hence the error in the discretization [26].

Equations (11) and (12) implicitly incorporate the metric of the
background manifold by assuming lengths, areas and volumes for the
lattice elements (they can also be thought as ‘defining’ the metric).
Maxwell’s system of eqs. (1)–(6) is fully discretized once the matrices
in Eqs. (11) and (12) are obtained. This can be done, e.g., by
first introducing an inner product and using a modified Whitney
map which incorporates this background metric through the canonical
isomorphism between forms and vectors (defined by the metric itself).
Then, from this (metric dependent) representation for the cochains, a
modified de Rham map on the dual lattice could be used to obtain the
matrices in Eqs. (11) and (12) explicitly for any lattice. A fundamental
problem with this (otherwise natural) approach, however, is that the
dual lattice of a simplicial primal lattice is not simplicial anymore and
hence the Whitney and de Rham maps are not applicable as defined
before (i.e., on a simplicial lattice). This problem can be overcome by
using a barycentric dual lattice χ̃, and modified Whitney and de Rham
maps on the first barycentric subdivision of χ and χ̃ [43–45, 47, 48].
This is the topic of the next section.

4. DUAL LATTICES AND BARYCENTRIC
SUBDIVISION

4.1. Hodge Duality in Topological Field Theories

A simple geometric construction exists such that the dual lattice
to any (primal) simplicial lattice can be decomposed into simplicial
elements [43–45, 47, 48]. This construction is based on the concept of
a barycentric dual lattice and its barycentric subdivision.

In the context of the Abelian Chern-Simons (CS) theory (an
extensively used model for 2+1 gauge theories), it was recently
demonstrated that by using a barycentric subdivision (and a field-
doubling procedure not relevant here2), the resulting discretization
scheme is capable of completely capturing the topological features of the
theory even before taking the continuum limit [45]. Among the unique
aspects of the barycentric subdivision is that it is affine invariant (the
2 Through this field doubling, the original gauge field and a new gauge field are made to
belong to dual spaces (dual cell complexes). In the electromagnetic case, the field doubling
is unnecessary because the explicit presence of the Hodge operator in Eq. (15) below already
forces the presence of the dual complex from the start.
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barycenter construction is metric-free). We will next consider this
scheme in connection with the simplicial discretization of eqs. (1)–(6).

In the case of the Abelian CS theory considered in [45], the action
of the theory is given by

SCS =
∫
D3

A ∧ dA (14)

where A is the gauge field (potential 1-form) and D3 the domain
of interest (a three-dimensional compact manifold). In contrast, the
action for Eqs. (1)-(6) is written as

SEM =
∫
D4

F ∧ ∗F =
∫
D4

dA ∧ ∗dA (15)

where F is the electromagnetic (strength) 2-form, F = E∧dt+B, and,
A is the electromagnetic four-potential 1-form (gauge field) [2]. In the
electromagnetic case, the domain D4 in the equation above is the flat
four-dimensional (Minkowski) space-time.

Conspicuous in Eq. (15) (apart from the dimensionality) is the
appearance of the four-dimensional spatio-temporal Hodge ∗, which
is responsible for the metric structure of Maxwell’s equations [the ∗
operator is related to the previously considered Hodge operators (on
each spatial slice) of Eqs. (5) and (6) through ∗F = −µ−1 
µ B ∧ dt+
ε−1 
ε E]. In contrast, Eq. (14) is entirely metric-free, constituting a
celebrated example of a topological field theory [49–53]. To capture the
topological features of the CS theory, a discrete duality operator was
introduced in [45]. Such operator [dubbed ‘discrete Hodge star’ but not
quite so in the sense of the (metric dependent) operators of Eqs. (5) and
(6)] is also metric-free. It defines a Hodge duality through a pairing
in Cp which does not reproduce (in general) the metric structure of
a general lattice. This is not a issue for the CS theory because of
the metric-free character of Eq. (14)3. For the electromagnetic field,
we use the same barycentric subdivision, but we must necessarily
incorporate the presence of the metric structure associated with the
Hodge operator. This is detailed in the next section.

4.2. Whitney Maps on the Dual Lattice via Barycentric
Subdivision

Analogously to [45], the construction here relies also on the concept
of a barycentric dual lattice and its barycentric subdivision. The
3 Because of this, the Hodge star in [45] always appears in conjunction with an inner
product so that the end result does not depend on the metric used to construct both.



Geometric aspects of simplicial discretization 181

barycenter of a simplex σM = [x0, x1, ...xM ] is defined by

b(σM ) =
1

M + 1

M∑
i=0

xi (16)

A barycentric dual lattice χ̃ can be constructed by joining barycenters
of the primal lattice, see [45]. This dual lattice is not simplicial
anymore4.

The vertices of the barycentric subdivision of the simplicial
complex χ are given by b(σM ) for all σM in χ, M = 0, 1, ..N . We
denote the first barycentric subdivision (or barycentric subdivision,
for short) as χ̂. The important point here is that χ̂ is always a
simplicial complex. The oriented (M − p)-simplices of χ̂ are given by
[b(σpi ), b(σ

p+1
j ), ..., b(σp+Mk )] for all combinations where σpi ⊂ σp+1

j ⊂
... ⊂ σp+Mk . In other words, the vertices of the barycentric subdivision
are the barycenters of a sequence of successively higher dimensional
simplices, where each successive simplex is a face of the next one.
Because both the primal χ and barycentric dual χ̃ complexes are
subsets of the barycentric subdivision complex χ̂, a Whitney map on χ̃
can be defined by identifying elements (cells) of χ̃ with a corresponding
chain on χ̂, Bχ̃ : Cp(χ̃)→ Cp(χ̂) (barycentric map), using the natural
pairing Cp(χ̂) → Cp(χ̂), and the Whitney map on the cochains of χ̂
(union of simplices) , Wh : Cp(χ̂)→ Φp(χ̂). A lattice Hodge operator
in the sense of Eqs. (11), (12) can then be constructed on a simplicial
lattice and its dual by using the following composition

[
]χ̃χ : Cp(χ̃)→ Cp(χ)
[
]χ̃χ = (Bχ)−1 ◦ (Rh) ◦ (
) ◦ (Wh) ◦ (Bχ̃) (17)

and analogously for reverse map

[
]χχ̃ : Cp(χ)→ Cp(χ̃)
[
]χχ̃ = (Bχ̃)−1 ◦ (Rh) ◦ (
) ◦ (Wh) ◦ (Bχ) (18)

Note that such discrete Hodge 
 operators are in general not local
anymore: The matrices [
]χ̃χ and [
]χχ̃ are sparse but not necessarily
diagonal. This non-locality turns out to be a general feature in the case
of arbitrary (non-orthogonal) lattices. Diagonal matrices are obtained
only in particular cases by an explicit construction of orthogonal dual
lattices (such as the Yee cell [54–61] or the Voronoi-Delaunay cell
4 Also, this is not equivalent to the standard Poincaré dual complex construction often
found in the literature, which is carried out by joining barycenters of the N -dimensional
simplices only, where N is the dimension of the space.
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mentioned before [46, 61, 62]). A similar non-local character is also
present (this time on the definition of discrete spatial operators or
their adjoints) in discretization schemes which do not resort to a dual
lattice construction [63–65].

For the Bχ and Bχ̃ maps, we write σMi =
∑
k η

M
ik σ̂

M
k , σ̃Mi =∑

k η̃
M
ik σ̂

M
k , respectively, where M = 0, .., 3, and the coefficients ηMik and

η̃Mik are equal to zero or unity (chain projections on χ̂). For M = 0, 1
we have that ηMik η̃

M
jk = 0 for any i, j, k (i.e., χ and χ̃ map into disjoint

subspaces of χ̂), but this is not true anymore for M = 2, 3. Both
ηMik and η̃Mik are sparse matrices. For the Bχ map (decomposition
of simplices on χ into ‘smaller’ simplices on χ̂), there is a total of
(M + 1)! nonzero entries on each row of the matrix ηMik . For the Bχ̃
map (decomposition of non-simplicial cells on χ̃ into simplices on χ̂),
we still have the same total of nonzero entries on each row of η̃Mik for
the 0-cells and 1-cells (M = 0, 1) cases, but for the higher dimensional
cells, the number of non-zero entries of η̃Mik in general will vary (since
the number of vertices on each 2-cell or 3-cell on χ̃ may vary).

Using Eqs. (17)-(18), the discrete Hodge operators are written as

[
ε]ij =
∑
k

η̃2
ik

∫
σ̂2
k

∑
k′
η1
jk′

[

εϕ(σ̂1

k′)
]

(19)

[
µ]ij =
∑
k

η2
ik

∫
σ̂2
k

∑
k′
η̃1
jk′

[

µϕ(σ̂1

k′)
]

(20)

Or, in vector calculus language,

[
ε]ij =
∑
k

η̃2
ik

∫
σ̂2
k

ε n̂dS ·
∑
k′
η1
jk′gE

[
ϕ(σ̂1

k′)
]

=

∑
k

η̃2
ik

∫
σ̂2
k

ε n̂dS · gE
[
ϕ(σ1

j )
]

(21)

[
µ]ij =
∑
k

η2
ik

∫
σ̂2
k

µ n̂dS ·
∑
k′
η̃1
jk′gE

[
ϕ(σ̂1

k′)
]

=

∫
σ2
i

µ n̂dS ·
∑
k′
η̃1
jk′gE

[
ϕ(σ̂1

k′)
]

(22)

where dS is the area element, n̂ its unit normal vector, and the operator
gE represents the (canonical) isomorphism between forms and vectors
given by a metric [40]. For instance, in the Euclidean case and for the
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1-forms (M = 1) in Eqs. (21)–(22), gE replaces the exterior derivative
d in Eq. (13) by the nabla operator ∇ (this, together with the inner
product with the area element dS, represents the metric in the vector
calculus picture). The (arbitrary) choice of the ordinary complex (E
and B) as the primal (simplicial) and the twisted complex (D and H)
as the dual (non-simplicial) is evident from the above equations.

The expressions on the right of Eqs. (21)–(22) (containing a single
summation) result from the fact that the primal lattice χ is already
simplicial. However, these shortened expressions involve two spaces (χ
and χ̂) instead of a single one χ̂, and lack the symmetry of the middle
expressions with double summation which fully utilize the barycentric
subdivision and where the simplicial primal lattice does not play any
special role. Furthermore, they allow the elimination of any reference
to χ and χ̃, once the coefficients ηMik and η̃Mik are fixed, as also evident
in Eqs. (19)–(20).

Another property of the barycentric subdivision important to
mention here and demonstrated in [47] is that, in conjunction with
Whitney interpolations on the primal lattice, the chains of the
barycentric dual lattice are the assembling pieces of the surfaces for
which flux conservation (2-forms) can be verified. This suggests a
‘granular’ divergence-free condition at a discrete, interelement level.
Recall that the divergence-free condition is not true in general for
arbitrary surfaces because of the inter-element flux leaks (note also
that this aspect involves both the primal and the dual lattices
simultaneously, and therefore it does not follow from ∂2 = 0 on χ
or χ̃). This also indicates that such flux leaks are irrelevant if a
certain granularity is assumed for the spatial domain according to
the barycentric subdivision. Integrations over domains which do not
comprise chains of the barycentric subdivision are in this sense just
rendered meaningless.

5. CONCLUSIONS

Aspects of the discretization of Maxwell’s equations for general
simplicial lattices using differential forms and algebraic topological
concepts have been discussed.

First, the treatment of the discrete counterpart to the topological
part of Maxwell’s equations was reviewed. This treatment employs the
known pairing between the dual spaces of cochains (discrete differential
forms) and chains (geometrical elements) on a cell complex.

Then, the role of the first barycentric subdivision to establish
an isomorphism between the simplicial primal complex and the non-
simplicial dual complex was stressed. A key property of the barycentric
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dual complex and the barycentric subdivision complex is that they are
both metric-free constructions.

Under this rationale, we have shown that Whitney maps, defined
on the first barycentric subdivision lattice, can be used to build discrete
Hodge operators (i.e., the discretization of the metric part of Maxwell’s
equations encoded in the constitutive equations) for general simplicial
lattices.
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