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72076 Tuebingen, Germany

Abstract—The calculus of differential forms can be used to devise
a unified description of discrete differential forms of any order and
polynomial degree on simplicial meshes in any spatial dimension.
A general formula for suitable degrees of freedom is also available.
Fundamental properties of nodal interpolation can be established
easily. It turns out that higher order spaces, including variants with
locally varying polynomial order, emerge from the usual Whitney-
forms by local augmentation. This paves the way for an adaptive p-
version approach to discrete differential forms.
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1. INTRODUCTION

It is generally acknowledged that the calculus of differential forms is
the right device for mathematical modeling in many fields of physics,
in particular in electromagnetism [8, 3, 14]. For instance, it turns out
that the electric field should be regarded as a 1-form, and that the
differential operators div and curl are just different manifestations of
the exterior derivative d of differential forms.

As differential forms capture the nature of continuous fields, it is
natural to resort to discrete differential forms when approximations
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of these fields are desired. Here, “discrete” means that the form is
completely determined by only a finite number of degrees of freedom.
By definition, the basic relationships of the calculus of differential forms
must hold for the discrete differential forms. Thus, essential properties
of the continuous physical models like conservation principles are
preserved in the discrete setting.

Special discrete differential forms that are associated with
triangulations of a computational domain give rise to finite elements
that offer appropriate spaces for the corresponding physical quantities.
For instance, they supply the hugely popular edge elements of
computational electromagnetism. In conjunction with variational
principles, discrete differential forms thus become a powerful tool for
the approximate numerical solution of boundary value problems.

With hindsight, it is startling that after the discovery of discrete
differential forms by Whitney [27] it took a long time before their
significance as computational tool was realized [6, 7]. Without referring
to differential geometry, several authors [22, 23, 25] had devised vector
valued finite elements that can be regarded as special cases of discrete
differential forms. Their constructions are formidably intricate and
require much technical effort.

A substantial simplification can be achieved as was demonstrated
in [18]: One should exploit the facilities provided by differential
geometry for a completely coordinate-free treatment of discrete
differential forms. Once we have shed the cumbersome vector calculus,
everything can be constructed and studied with unmatched generality
and elegance. In particular, all orders of forms and all degrees of
polynomial approximation can be dealt with in the same framework.
This can be done for simplicial meshes in arbitrary dimension.

The purpose of this paper is twofold. First the results in [18] should
be made accessible to a wider audience beyond theoretical numerical
analysts. Secondly, special attention is paid to discrete differential
forms of higher polynomial degree. The rationale is the arrival of so-
called p-adaptive finite element schemes. Their principle is to adjust the
polynomial degree of the approximating finite elements to local features
of the solution in order to gain accuracy with minimum costs. When
this idea is to be applied to discrete differential forms it becomes vital
to know suitable local basis functions for various polynomial degrees.
Higher order discrete differential forms also form the foundation of
hierarchical a-posteriori error estimators [4].

This paper complements and caps several earlier investigations
into the subject of higher order edge elements [1, 13, 17, 24, 16, 20,
28, 26]. However, it does not discuss special schemes, but emphasizes
governing principles. Once these are understood, they offer guidance
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on how to tailor higher order discrete differential forms to particular
needs.

I should stress that the entire presentation is set in a purely affine
context and, consequently, never resorts to vectorfields or functions
representing differential forms. This is in stark contrast with the usual
treatment of higher order discrete differential forms in literature. Thus
my exposure might strike many a reader as peculiar. Yet, metric
structures are alien to discrete differential forms. Of course, ultimately
orthogonal coordinates come handily for actual computations, but
introducing them already for the construction of discrete differential
forms distracts from generic properties.

2. EXTERIOR CALCULUS

This section summarizes a few fundamental concepts of exterior
calculus. It does not attempt to give an introduction to the subject.
For a comprehensive discussion of the theory of differential forms see
the monograph [11] or consult your favorite textbook on advanced
differential calculus.

In the most general sense, Ω may be a (piecewise) smooth oriented
and bounded n-dimensional Riemannian manifold, n ∈ N, with a
piecewise smooth boundary. A differential form ω of order l, 0 ≤ l ≤ n,
is a mapping from Ω into the

(
n
l

)
-dimensional space �l(TΩ(x)) of

alternating l–multilinear forms on the n-dimensional tangent space
TΩ(x) at Ω in x ∈ Ω [11, Sect. 2.1]. In the sequel, Dl

k(Ω) stands for the
space of l-forms on Ω of class Ck.

A fundamental concept in the theory of differential forms is the
integral of a p-form over a piecewise smooth p-dimensional oriented
manifold. Through integration a differential form assigns a value to
each suitable manifold, modeling the physical procedure of measuring
a field. We write Dl(Ω) for the vector space of l-forms on Ω,
whose Riemann-integrals exist for any compact piecewise smooth l-
dimensional submanifold of Ω.

From alternating l-multilinear forms differential l-forms inherit the
exterior product ∧ : Dl

0(Ω) × Dk
0(Ω) �→ Dl+k

0 (Ω), 0 ≤ l, k, l + k ≤ n,
defined in a pointwise sense. Moreover, remember that the trace tΣω
of an l-form ω ∈ Dl(Ω), 0 ≤ l < n, onto some piecewise smooth n− 1-
dimensional submanifold Σ ⊂ Ω̄ yields an l-form on Σ [19, Sect. 1.10].
It can be introduced by restricting ω(x) ∈ �l(TΩ(x)), x ∈ Σ, to the
tangent space of Σ in x. The trace commutes with the exterior product
and exterior differentiation, i.e. d tΣω = tΣdω for ω ∈ Dl

1(Ω).
Another crucial device is the exterior derivative d , a linear

mapping from differentiable l-forms into l + 1-forms. Moreover,
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Stokes’ theorem makes it possible to define the exterior derivative
dω ∈ Dl+1(Ω) of ω ∈ Dl(Ω). A fundamental fact about exterior
differentiation is that d(d ω) = 0 for any sufficiently smooth differential
form ω. Under some restrictions on the topology of Ω the converse is
also true:

Theorem 2.1(Poincaré’s lemma) For a contractible domain Ω ⊂
R
n every ω ∈ Dl

1(Ω), l ≥ 1, with dω = 0 is the exterior derivative of
an l − 1–form over Ω.

This result is sometimes referred to as the exact sequence property.
A second main result about the exterior derivative is the integration
by parts formula [19, Sect. 3.2]∫

Ω

dω ∧ η + (−1)l
∫
Ω

ω ∧ dη =
∫
∂Ω

ω ∧ η (1)

for ω ∈ Dl(Ω), η ∈ Dk(Ω), 0 ≤ l, k < n − 1, l + k = n − 1. Here, the
boundary ∂Ω is endowed with the induced orientation.

Finally, we recall the pullback ω �→ Φ∗ω under a change
of variables described by a diffeomorphism Φ. This transformation
commutes with both the exterior product and the exterior derivative,
and it leaves the integral invariant.

3. LOCAL SPACES

Following the classical approach in the theory of finite elements [12],
we first try to establish suitable spaces X l

k(T ) of discrete l-forms,
0 ≤ l ≤ n, on individual simplices Ti of a triangulation Th := {Ti}
of Ω ⊂ Rn. Here, k ∈ N0 stands for the “polynomial degree” of the
forms, a notion that will be explained in a moment.

The transformation of differential forms immediately suggests that
we should opt for a construction based on affine equivalence. This
means that the local spaces X l

k(T̂ ) of discrete differential forms are
first specified on some reference simplex T̂ . An arbitrary simplex T

of the mesh Th can be mapped onto T̂ by an affine transformation
ΦT : T �→ T̂ . Then the corresponding pullback converts the discrete
forms on T̂ into those on T according to

X l
k(T ) := Φ∗TX

l
k(T̂ ) . (2)

A tenet of affine equivalence is that the choice of T̂ must not matter in
the end. The reader can always imagine T̂ to be the simplex spanned by
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the canonical basis vectors of Rn. At least, without loss of generality,
assume 0 ∈ T̂ .

In the choice of the spaces X l
k(T̂ ) we are guided by a few basic

requirements stipulated by prerequisites for sensible finite elements,
natural properties of differential forms, and the goal of a unified
treatment. Firstly, we legitimately expect the exterior derivative of
a discrete l-form to be a discrete l + 1-form of the same degree,
0 ≤ l ≤ n− 1, i.e.

dX l
k(T̂ ) ⊂ X l+1

k (T̂ ) . (3)

If the bid to save the exact sequence property for discrete forms is to
succeed, we must demand even more, namely

{ω ∈ X l
k(T̂ ), dω = 0} = dX l−1

k (T̂ ) , 1 ≤ l ≤ n . (4)

Secondly, if S is some sub-simplex of T̂ , i.e. the closed convex hull of
some of its vertices, then tSω ∈ Dl

k(S), if ω ∈ Dl
k(T̂ ). This property

should be inherited by the discrete forms, i.e.

tSX l
k(T̂ ) = X l

k(S) . (5)

It goes without saying that X l
k(S) is generated according to (2) as well.

In particular, (5) means that the restriction of a discrete differential
form to some face of T̂ yields a valid discrete differential form in
dimension n− 1.

Finally, the discrete differential forms have to possess satisfactory
approximation properties. They are guaranteed through Bramble-
Hilbert arguments as soon as piecewise polynomial forms of a
prescribed degree are contained in the spaces (cf. [9, Ch. 4]). But,
what is a polynomial differential form? Remember that given a basis
dx1, . . . , dxn of the dual space of TΩ(x) the set

{dxi1 ∧ . . . ∧ dxil ; ij ∈ {1, . . . , n}, 1 ≤ j ≤ l, i1 < i2 < . . . < il} (6)

furnishes a basis for the space of alternating l-multilinear forms on
TΩ(x). Thus any ω ∈ Dl(Ω) has a representation

ω =
∑

(i1,... ,il)

ϕi1,... ,il dxi1 ∧ . . . ∧ dxil , (7)

where the indices run through all combinations admissible according
to (6) and the ϕi1,... ,il : Ω �→ R are coefficient functions.

Therefore, we call a differential form polynomial of degree k,
k ∈ N0, if all its coefficient functions in (7) are polynomials of
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that degree. For convenience, we adopt special notations for spaces
of “polynomial type” over an m–dimensional simplex S (A tilde
will invariably tag spaces of homogeneous polynomials): Pk(S) :=
Space of m–variate polynomials of degree ≤ k on S, k ∈ Z;
DP lk(S) :=

{
ω ∈ Dl

∞(S); ϕi1,..,il ∈ Pk(S) in rep. (7)
}
, l ∈ Z; P̃k(S) :=

Space of m–variate homogeneous polynomials of degree k ∈ Z on
S; D̃P

l

k(S) :=
{
ω ∈ Dl

∞(S); ϕi1,... ,il ∈ P̃k(S) in rep. (7)
}

, l ∈ Z. We
follow the convention that for l < 0, l > m and k < 0 these spaces are
to be trivial. With polynomial spaces at our disposal we can state the
third requirement as

DP lk(T̂ ) ⊂ X l
k(T̂ ) ⊂ DP lk+1(T̂ ) . (8)

I point out that the above requirements are affine invariant, i.e. they
remain true for any X l

k(T ) given by (2). The properties of the pullback
guarantee this for (4) and (5). On top of that, be aware that the

definition of the spaces DP lk(S) and D̃P
l

k(S) is utterly independent
of the choice of the basis (6). Hence, affine pullbacks leave the spaces
invariant and (8) is seen to be affine invariant, too. In other words, if
X l
k(T̂ ) meets the requirements, they carry over to any X l

k(T ), T ∈ Th.
Surprisingly, the three requirements already fix the dimension of

the local spaces X l
k(T̂ ): We start with the formal direct sum

X l
k(T̂ ) = DP lk(T̂ )⊕ Y l

k(T̂ ) , Y l
k(T̂ ) ⊂ D̃P

l

k+1(T̂ ) ,

which means

dimX l
k(T̂ ) = dimDP lk(T̂ ) + dimY l

k(T̂ ) . (9)

Once we know X l
k(T̂ ), the space Y l

k(T̂ ) is uniquely defined, because
homogeneous polynomials of different degree are linearly independent.
We claim that

D̃P
l

k+1(T̂ ) = Y l
k(T̂ )⊕ H̃N l

k+1(T̂ ) (10)

is a direct sum. To see this, we make use of the elementary fact

ω ∈ D̃P lk+1(T̂ ) ⇒ dω ∈ D̃P l+1

k (T̂ ) , 0 ≤ l ≤ n− 1, k ≥ 1 .
(11)

Then, pick ω ∈ Y l
k(T̂ ) ∩ H̃N

l

k+1(T̂ ), that is dω = 0. From (4)
we conclude ω ∈ dX l−1

k (T̂ ) and, by (11), ω ∈ DP lk(T̂ ). Hence
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ω ∈ D̃P
l

k+1(T̂ ) ∩ DP lk(T̂ ) = {0}. On the other hand, for each

η ∈ D̃P
l

k+1(T̂ ) we have by (11) that dη ∈ D̃P
l+1

k (T̂ ) ⊂ X l+1
k (T̂ ).

By (4) there is a φ ∈ X l
k(T̂ ) such that dφ = dη. Imagine that

φ is split into homogeneous polynomials of different degree. This
decomposition is unique and non-vanishing exterior derivatives of its
components are linearly independent. This illustrates, why we can
assume φ ∈ D̃P lk+1(T̂ ) ∩X l

k(T̂ ) = Y l
k(T̂ ). Finally

η = φ+ (η − φ) , φ ∈ Y l
k(T̂ ) , η − φ ∈ H̃N l

k+1(T̂ ) .

In terms of dimensions, (10) means

dim D̃P
l

k+1(T̂ ) = dimY l
k(T̂ ) + dim H̃N

l

k+1(T̂ ) . (12)

We point out that by (11), (16), and since applying the exterior
derivative twice results in zero

H̃N
l

k+1(T̂ ) = d(D̃P
l−1

k+2(T̂ )) .

Thanks to the well–known relationship between the rank and the
dimension of the null space of the linear mapping d : D̃P

l−1

k+2(T̂ ) �→
H̃N

l

k+1(T̂ ), we can establish

dim H̃N
l

k+1(T̂ ) = dim D̃P
l−1

k+2(T̂ )− dim H̃N
l−1

k+2(T̂ ) . (13)

That DP lk+1(T̂ ) = D̃P
l

k+1(T̂ )⊕DP lk(T̂ ) needs no explanation. Then,
plugging (12) into (9), we get

dimX l
k(T̂ ) = dimDP lk+1(T̂ )− dim H̃N

l

k+1(T̂ ) . (14)

We rewrite (14) by means of (13) and then rely on (14) itself with l−1
instead of l. These involved manipulations yield the recursion

dimX l
k(T̂ ) = dimDP lk+1(T̂ )− dim D̃P

l−1

k+2(T̂ ) +

dimDP l−1
k+2(T̂ )− dimX l−1

k+1(T̂ ) .

Combinatorics teaches us

dimDP kl (T̂ ) = dim�l(Rn) · dimPk(T̂ ) =
(
n

l

)(
n+ k

k

)
,

dim D̃P
k

l (T̂ ) = dim�l(Rn) · dim P̃k(T̂ ) =
(
n

l

)(
n+ k − 1

k

)
.
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Using quite a few identities for binomial coefficients, the final result is

dimX l
k(T̂ ) =

(
n+ 1
l

)(
n+ k + 1

n

)
− dimX l−1

k+1(T̂ )

=
0∑
i=l

(−1)l−i
(
n+ 1
i

)(
n+ l − i+ k + 1

n

)

=
n∑
i=l

(
n+ 1
i+ 1

)(
i

i− l

)(
k + l

i

)
.

This formula is universally valid, if we stick to the convention that for
any

(
n
k

)
= 0, if k < 0 or k > n, n, k ∈ Z. Concrete dimensions of local

spaces in three dimensions are given in table 1.

k 0 1 2 3 4 5 General formula
l = 1 6 20 45 84 140 216 1

2(k + 1)(k + 3)(k + 4)
l = 2 4 15 36 70 120 189 1

2(k + 4)(k + 2)(k + 1)

Table 1. Dimensions of higher order spaces of edge (l = 1) and face
(l = 2) elements, c.f. [22, 16].

Remark. The space X l
k(T̂ ) is by no means completely determined

by (4), (5), and (8). Remark. We have seen that

DP lk+1(T̂ ) = X l
k(T̂ ) + dX l−1

k+1(T̂ ) ,

i.e. full polynomial local spaces can be achieved by incorporating
derivatives of functions belonging to local spaces of the next higher
order. The construction of “second families” of discrete differential
forms [23] is based on this fact.

It is nice to know dimX l
k(T̂ ), but we still cannot be certain that

the requirements can be satisfied at all. All doubts will be crushed,
as soon as we have constructed specimens of X l

k(T̂ ). The reader will
agree that (4) is the most challenging demand. Therefore, any serious
attack on the construction of X l

k(T̂ ) will focus on (4), which amounts
to Poincaré’s lemma for the local spaces of discrete differential forms.
It is worth while studying the proof of theorem 2.1. We find that it
is constructive and uses the so-called Poincaré-mapping ka : Dl

0(Ω) �→



Higher order Whitney forms 279

Dl−1
1 (Ω), 0 < l ≤ n, for x ∈ Ω and vi ∈ Rn defined by

ka(ω)(x)(v1, ..,vl−1) :=

1∫
0

tl−1ω(a + t(x− a))(x− a,v1, ..,vl−1) dt ,

(15)

to get a potential for the closed form ω. For ω ∈ Dl
1(Ω), ka(ω) is a

valid l − 1–form and satisfies (cf. [11], Formula 2.13.2)

d(ka(ω)) + ka(dω) = ω . (16)

Sloppily speaking, the Poincaré mapping is a sort of partial right
inverse of the exterior derivative, as d ◦ ka ◦ d = d.

It is immediately clear that the Poincaré-mapping takes
polynomial forms to other polynomial forms. Straightforward, but
tedious computations reveal the details (cf. lemma 5 in [18]):

Lemma 3.1 For ω ∈ D̃P
l

k(T̂ ), k > 0, we know that ka(ω) ∈
DP l−1

k+1(T̂ ). In the special case a = 0, the even stronger assertion

k0(ω) ∈ D̃P l−1

k+1(T̂ ) holds true.
This motivates a tentative definition of Xk

l (T̂ ) by

Xk
l (T̂ ) := DP lk(T̂ ) + ka(DP l+1

k (T̂ )) , a ∈ T̂ .

Strictly speaking, this is not a valid definition before we have not
shown that the choice of a ∈ T̂ does not matter. First recall that
for p ∈ Pk(T̂ ) the difference p(·)− p(· − c) belongs to Pk−1(T̂ ) for any
c ∈ Rn. Therefore we can decompose ω ∈ DP lk(T̂ ) into

ω(a + t(x− a)) = ω(tx) + π(tx) ,

where π ∈ DP lk−1(T̂ ). Using the definition of the potential mapping
and the token • for l − 1 vectors from R

n, we get

ka(ω)(x)(•) = −
1∫

0

tl−1 ω(a + t(x− a))(a, •)︸ ︷︷ ︸
∈DP l−1

k (T̂ )

dt

+

1∫
0

tl−1 (ω(tx) + π(tx)) (x, •) dt

= k0(ω)(x)(•) + η(x)(•) ,
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with an η ∈ DP l−1
k (T̂ ) according to Lemma (3.1). In short, ka(ω) −

k0(ω) ∈ DP l−1
k (T̂ ) and the above definition makes sense. Alas, it fails

to meet the requirements: Let us introduce the space of homogeneous
polynomial differential forms belonging to the nullspace of the exterior
derivative

H̃N
l

k(S) := {ω ∈ D̃P lk(S); dω = 0} .

For 0 < l ≤ n − 2, k ≥ 1, pick η ∈ H̃N
l+2

k−1(T̂ ), set µ := k0(η)
and conclude from (16) that µ = k0(dµ). In addition, lemma (3.1)

tells us that µ ∈ D̃P
l+1

k (T̂ ). Next, set ω := k0(µ), which means

dω = dk0(µ) = µ − k0(dµ) = 0 and ω ∈ D̃P lk+1(T̂ ). Moreover, η �= 0
involves ω �= 0, as the Poincaré-mapping is injective. On the other
hand, we want to have ω ∈ d(DP l−1

k+1(T̂ )) ⊂ DP lk(T̂ ), which fails for

η �= 0 as DP lk(T̂ )∩ D̃P lk+1(T̂ ) = {0}. At least one of the requirements

is violated, if H̃N
l+2

k−1(T̂ ) �= {0}, which can be verified by elementary

calculations, since H̃N
l+2

k−1(T̂ ) = dD̃P
l+1

k (T̂ ).
The tentative definition supplies a space that is simply too large.

Carefully inspecting its flaws, one finds that only closed forms should
be admitted as arguments to the Poincaré-mapping. This leads us to
the improved definition

X l
k(T̂ ) := DP lk(T̂ ) + ka

(
H̃N

l+1

k (T̂ )
)

(17)

The point a ∈ T̂ is arbitrary, but it does not make a difference, anyway.
By lemma (3.1) it is obvious that (8) holds. Then, (3) is an immediate
consequence. To verify (4) keep in mind that we could have given the
equivalent definition

X l
k(T̂ ) := DP lk(T̂ ) + ka

(
{ω ∈ DP l+1

k (T̂ ), dω = 0}
)
.

We also observe that thanks to lemma (3.1) the splitting

X l
k(T̂ ) := DP lk(T̂ )⊕ k0

(
H̃N

l+1

k (T̂ )
)

(18)

is direct, as homogeneous polynomials of different degree are linearly
independent. Let ω ∈ X l

k(T̂ ) with dω = 0 be split according to (18)

into ω = ω0 + ω̃. Since ω̃ ∈ D̃P
l

k+1(T̂ ) and ω0 ∈ DP lk(T̂ ), the
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linear independence of homogeneous polynomials of different degree
combined with lemma (3.1) shows that dω̃ = 0. But ω̃ = k0(η) for

η ∈ H̃N l+1

k (T̂ ) and so (16) can be employed to get

η = dk0(η) + k0(dη) = dω̃ + k0(0) = 0 ⇒ ω̃ = 0 .

Eventually we have found ω = ω0 ∈ DP lk(T̂ ) and arrive at

ω = dk0(ω) ∈ d
(
X l−1
k (T̂ )

)
.

To confirm the trace property (5) we consider one n − 1-dimensional
subsimplex F , a face of T̂ . Induction with respect to n will settle
everything else. Pick a in (17) as a vertex of F and note that x − a
belongs to the tangent hyperplane of F . Thus, by the very definition
of the trace of a differential form

tF (ka(ω)) = ka(tFω) ∀ω ∈ Dl
0(T̂ ) .

Since obviously tF (DP lk(T̂ )) = DP lk(F ), the identity X l
k(F ) =

tFX l
k(T̂ ) follows.
We now scrutinize a few special cases of local ansatz spaces

generated by formula (17): For l = n we get X l
k(T̂ ) = DP lk(T̂ ),

since H̃N
l+1

k (T̂ ) = {0}. Also in the case l = 0 we end up with
complete polynomial spaces: For any ω ∈ D0

1(T̂ ) with ω(0) = 0 we
have ω = k0(dω) by (16). Obviously this involves

k0(H̃N
1

k(T̂ )) = D̃P
0

k+1(T̂ ) ,

as dω ∈ H̃N1

k(T̂ ) for all ω ∈ D̃P 0

k+1(T̂ ). An easy consequence is that
in the case l = 0

X0
k(T̂ ) = DP 0

k(T̂ ) + D̃P
0

k+1(T̂ ) = DP 0
k+1(T̂ ) ,

i.e. the full space of polynomials of degree ≤ k + 1.
Example. An explicit construction of the local space X1

1 (T̂ ) in
two dimensions can be carried out as follows: Using affine coordinates
{x1, x2} we can write

D̃P
2

1(T̂ ) = {ω(x) = (α1x1 + α2x2)dx1 ∧ dx2, α1, α2 ∈ R} .

Note that in this case H̃N
2

1(T̂ ) = D̃P
2

1(T̂ ). If this did not hold,
the condition dω = 0 would introduce some linear constraints for



282 Hiptmair

the coefficients α1 and α2. For ω = (α1x1 + α2x2)dx1 ∧ dx2 simple
computations yield

k0(ω)(x) =

1∫
0

t(α1tx1 + α2tx2)(dx1 ∧ dx2)(x, ·) dt

=
1
3
(α1x1 + α2x2)(x1dx2 − x2dx1) .

(19)

This means according to (17)

X1
1 (T̂ ) =

 ω =(γ1 + β11x1 + β12x2 − α1x1x2 − α2x
2
2)dx1 +

+ (γ2 + β21x1 + β22x2 + α1x
2
1 − α2x1x2)dx2,

γi, αi, βij ∈ R

 .

Remark. Simple counterexamples show that in general

X l
k(T̂ ) �= X0

0 (T̂ ) ∧ . . . ∧X0
0 (T̂ )︸ ︷︷ ︸

k−1 times

∧X l
0(T̂ ) .

As a technical tool we are going to need the local spaces of discrete
differential forms with vanishing trace on ∂T̂

H l
k(T̂ ) := {ω ∈ X l

k(T̂ ), t
∂T̂
ω = 0} .

It can be confirmed (cf. [18, Lemma 17]) that the local exact sequence
property applies to these spaces, as well

{ω ∈ H l
k(T̂ ), dω = 0} = d H l−1

k (T̂ ) , 0 ≤ l < n , (20)

{ω ∈ Xn
k (T̂ ),

∫
T̂

ω = 0} = d Hn−1
k (T̂ ) . (21)

4. DEGREES OF FREEDOM

The previous section provided us with with local spaces X l
k(T ) of l-

forms on the simplices T of a triangulation Th of Ω. The corresponding
global space of finite dimension is

X l
k(Th,Ω) := {ω ∈ Dl(Ω), ω|T ∈ X l

k(T )∀T ∈ Th} .

This innocent looking definition conceals a so-called patch condition,
that is, a recipe how two polynomial l-forms have to be glued together
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at interelement faces T ∩ T ′, T, T ′ ∈ Th, to produce a valid form in
Dl(Ω). Let me elucidate this by means of some intuitive arguments:
Recall that valid l-forms are distinguished by providing meaningful
integrals over orientable l-manifolds. Now, consider a smooth l-
manifold S, 0 ≤ l < n, that intersects an interelement face F . Problems
crop up when the intersection is not a set of measure zero in S, which
happens when S somewhere “runs parallel” to F . There the tangent
spaces for S are contained in the tangent hyperplane of F . To render
the integral of ω ∈ X l

k(Th,Ω) over S well defined, it is sufficient that
ω|F∩S provides unique values when applied to tangent vectors of F . As
S is arbitrary, the condition is also necessary.

Definition 4.1A piecewise smooth differential form on Th
satisfies the patch condition, if its traces onto interelement faces from
both sides agree.

We have d arrived at the equivalent definition

X l
k(Th,Ω) := {ω ∈

⊗
T∈Th

X l
k(T ), ω satisfies the patch condition} .

Two issues are looming large: Firstly, forcing the traces to agree implies
linear constraints, which might actually curtail the local spaces. In
other words, we have to make sure that for any T ∈ Th and µ ∈ X l

k(T )
there is an ω ∈ X l

k(Th,Ω) such that ω|T = µ. Secondly, the resulting
space X l

k(Th,Ω) might not be computationally efficient in the sense
that a basis of X l

k(Th,Ω) invariably consists of functions with global
supports. This would thwart the use of X l

k(Th,Ω) for a finite element
scheme.

It is the crucial role of suitable degrees of freedom (d.o.f.) to bring
about a satisfactory settlement of these issues. In general, degrees
of freedom are a basis of the dual space X l

k(Th,Ω)′. In the spirit
of the previous section, we confine ourselves to an affine equivalent
construction and first specify the degrees of freedom on the reference
simplex T̂ only: We look for a set Ξlk(T̂ ) := {κ̂1, . . . , κ̂Nk,l}, Nk,l =
dimX l

k(T̂ ), l ∈ {0, . . . , n}, k ∈ N0, of linear forms

κ̂i : X l
k(T̂ ) �→ R , i ∈ {1, . . . , Nk,l}

that satisfies three fundamental requirements:

(i) The set Ξlk(T̂ ) has to be a basis of the dual space X l
k(T̂ )′, a

property that is called unisolvence.
(ii) The functionals κ̂i have to fit our policy to exploit affine

equivalence in that they remain invariant with respect to the
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pullback of differential forms. This makes sure that the arbitrary
choice of the reference element has no impact.

(iii) We demand a certain locality : Let Mi(T̂ ) stand for the set of all
sub-simplices of T̂ of dimension i, 0 ≤ i ≤ n, spanned by i + 1
vertices of T̂ . Then for each S ∈ Mi(T̂ ), l ≤ i ≤ n, we must be
able to find sets Ξlk(S) ⊂ Ξlk(T̂ ) such that for ω ∈ X l

k(T̂ )

tSω = 0 ⇐⇒ κ(ω) = 0 ∀κ ∈ Ξlk(S) . (22)

To see, why the third condition enables us to localize the degrees of
freedom, I point out that

Ξlk(S1) ∩ Ξlk(S2) = Ξlk(S1 ∩ S2) , S1, S2 ∈M(T̂ ) , (23)

where M(T̂ ) is the set of all sub-simplices of T̂ . This equation arises
from combining the locality condition of the d.o.f. with the splitting

{ω ∈ X l
k(T̂ ), tS1∩S2 ω = 0}

= {ω ∈ X l
k(T̂ ), tS1ω = 0}+ {ω ∈ X l

k(T̂ ), tS2ω = 0} .

This is proved by using a basis for the space of l-forms on T̂ that is
based on barycentric coordinate functionals. From (23) we conclude
that Ξlk(S1) ⊂ Ξlk(S2), if S1 ⊂ S2.

A closer scrutiny reveals that the third requirement means that
each degree of freedom on the reference element is associated with an
unique sub-simplex, on which it is said to be supported. We collect the
d.o.f. supported on S ∈M(T̂ ) in the set

Υl
k(S) := Ξlk(S) \

 ⋃
S′⊂S,S′ 	=S

Ξlk(S
′)

 .

Vice versa, the trace of a discrete form onto S is uniquely determined
by the degrees of freedom in Ξlk(S).

Locality makes it possible to turn local degrees of freedom into
global ones by the following procedure: For each i-dimensional sub-
simplex S ∈ Mi(Th) of the global triangulation pick some adjacent
element TS ∈ Th and define the set Ξlk(S, Th) of global degrees of
freedom associated with S by

Υl
k(S, Th) := {ω ∈ X l

k(Th,Ω) �→ κ̂(Φ∗TSω), κ̂ ∈ Υl
k(Ŝ)} , (24)
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where ΦTS : TS �→ T̂ is affine and Ŝ = ΦTS (S) ∈ Mi(T̂ ). Note that
thanks to the patch condition and affine invariance the selection of TS
is irrelevant. Thus, we obtain the set of global degrees of freedom

Ξlk(Th,Ω) :=
⋃

S∈Mi(Th),l≤i≤n
Υl
k(S, Th) .

It is clear that they are also locally supported on sub-simplices of Th.
In sum, any set of degrees of freedom on T̂ that fulfills 1.–3. generates
a proper set of global degrees of freedom.

It turns out that the patch condition is also necessary for Υl
k(S, Th)

to be well defined. Consider the face S := T1 ∩ T2, T1, T2 ∈ Th with
related affine mappings Φ1 : T1 �→ T̂ , Φ2 : T2 �→ T̂ , then, if (24) is to
be meaningful

κ̂(Φ∗1ω1 −Φ∗2ω2) = 0 ∀κ̂ ∈ Ξlk(Φ1(S)) ,

where ω1 := ω|T1
, ω2 := ω|T2

. As a consequence

tΦ1(S)(Φ
∗
1ω1 −Φ∗2ω2) = 0 ,

and the traces have to be same, since Φ1|S = Φ2|S . The gist is that
meaningful global degrees of freedom already guarantee the patch
condition.

All these considerations would be futile, unless suitable local
degrees of freedom can be found. I am going to give a positive answer
to this question by providing some specimens of Ξlk(T̂ ). Let me first
motivate the construction: The general form of the functionals is
immediate clear, as natural linear forms on spaces of differential forms
are given by integrals. Using appropriate integrals we also get the
invariance under pullback for free. Locality suggests that the d.o.f.
should be based on integrals over sub-simplices of T̂ . However, how
can we integrate an l-form over S, S ∈ Mi, if i > l? Weighting with
suitable i − l-forms provides the answer. Via these considerations I
arrived at the following description of degrees of freedom:

Definition 4.2 (Degrees of freedom) For S ∈Mi(T̂ ), 0 ≤ i ≤ n,
let {η1,S , . . . , ηd,S}, d = d(k, l, S) := dimDP i−lk−i+l(S), denote a basis of
DP i−lk−i+l(S). Then we can choose the linear forms κ̂m,S : X l

k(T̂ ) �→ R

given by

κ̂m,S(ω) :=
∫
S

ω ∧ ηm,S , S ∈Mi(T̂ ) , l ≤ i ≤ n , 1 ≤ m ≤ d(k, l, S)
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as degrees of freedom belonging to X l
k(T̂ ).

If we take unisolvence for granted, the essential locality of these
degrees of freedom is quickly established: For a sub-simplex S simply
choose

Υl
k(S) := {κ̂m,S , m = 1, . . . , d(k, l, S)} , Ξlk(S) :=

⋃
S′⊂S

Υl
k(S
′) .

Note that for S′ ⊂ S the values κ̂m,S′(ω) are determined by tSω. Yet
the union of all κ̂ ∈ Ξlk(S) exactly matches a set of d.o.f. that definition
(4.2) proposes for X l

k(S) (taking into account affine equivalence).
Now the fairly obscure requirement (5) comes into play. It ensures
tSX l

k(T̂ ) = X l
k(S). Therefore, unisolvence, which is now assumed to

hold for Ξlk(S), enforces tSω = 0.
Let me remark that definition (4.2) permits us to compute the

number of d.o.f. supported on S ∈Mi(T̂ ), l ≤ i ≤ n, easily:

%Υl
k(S) = dimDP i−lk−i+l(S) =

(
i

i− l

)(
k + l

i

)
(25)

It remains to settle the very issue of unisolvence. We start with a
technical lemma, whose proof can be looked up in [18]:

Lemma 4.3 Any ω ∈ H l
k(T̂ ) with vanishing differential dω, which

satisfies
∫
T̂
ω ∧ η = 0 for all η ∈ DPn−lk−(n−l)(T̂ ) has to be identically 0.

Theorem 4.4 (Unisolvence of degrees of freedom) The degrees of
freedom supplied by Definition (4.2) form a dual basis of X l

k(T̂ ).
Proof. A simple counting argument (cf. (25)) reveals that the

number of degrees of freedom from definition (4.2) agrees with the
dimension of X l

k(T̂ ) computed in the previous section. It remains to
be shown that they are linearly independent, i.e., that

ω ∈ X l
k(T̂ ) , κ(ω) = 0 ∀κ ∈ Ξlk(T̂ ) ⇒ ω = 0 .

We employ a “double induction” argument with respect to the
dimension n (increasing) and the order l, 0 ≤ l ≤ n, of the differential
form (decreasing).

(I) For n = 1 the assertion of the lemma is trivial. For arbitrary
n and l = n we have Xn

k (T̂ ) = DPnk(T̂ ) and only one kind of degree of
freedom remaining, namely those of the form∫

T̂

ω ∧ η for η ∈ DP 0
k(T̂ ) . (26)
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For ω = ϕdx1 ∧ . . . ∧ dxn, ϕ ∈ Pk(T̂ ), pick η = ϕ. Then (26) is equal
to

∫
T̂
ϕ2 dx. Thus the assumption of the lemma immediately implies

ϕ = 0 and ω = 0.
(II) Now, we admit general n ∈ N and l ∈ {0, . . . , n− 1}. Assume

that the lemma holds true for differential forms of order l + 1 and in
any dimension smaller than n.

For any lower dimensional simplex Ŝ ∈ Mi(T̂ ), l + 1 ≤ i ≤ n,
integration by parts (1) establishes the equality∫

Ŝ

dω ∧ η =
∫
Ŝ

d(ω ∧ η)− (−1)l
∫
Ŝ

ω ∧ dη ,

with η ∈ DP i−l−1
k−i+l+1(Ŝ). The second term must vanish, since, by

Lemma (3.1), dη ∈ DP i−lk−i+l(Ŝ), which makes it belong to the space
spanned by the “test polynomials” (weights) in Definition (4.2). To the
first term we apply Stokes’ theorem and we get∫

Ŝ

d(ω ∧ η) =
∫
∂Ŝ

ω ∧ η .

Again, we have recovered a right hand side that can be written as a
weighted sum of values of degrees of freedom. Hence, the first term
must be zero, too.

By construction dω ∈ X l+1
k (T̂ ). Above, we have shown∫

Ŝ

dω ∧ η = 0 ∀η ∈ DP i−l−1
k−i+l+1(Ŝ) , ∀Ŝ ∈Mi(T̂ ), l + 1 ≤ i ≤ n .

By the induction assumption with respect to l, this enforces dω = 0.
This means for our particular choice of local ansatz spaces that
ω ∈ DP lk(T̂ ).

Requirement (5) tells us that for F ∈Mn−1(T̂ ) tFω ∈ X l
k(F ). As

I pointed out before, the degrees of freedom for X l
k(T̂ ) that belong to

a face F are suitable degrees of freedom for X l
k(F ). Relying on the

induction assumption for n− 1, we see that t
∂T̂
ω = 0.

In sum, ω complies with all assumptions of Lemma (4.3). We infer
that ω = 0. This completes one step of the induction. ✷

Remark. Often degrees of freedom of “interpolatory type” are
introduced that rely on point values of vector representatives of discrete
differential forms [16, 15]. They can be read as using special quadraturs
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schemes for the evaluation of weighted integrals like those occurring in
definition (4.2). However, these degrees of freedom are no longer affine
equivalent.

The previous theorem establishes the existence of at least one
viable set of degrees of freedom on T̂ . There is still some leeway left
as to the choice of Ξlk(T̂ ) and this goes beyond merely fixing the test
forms ηm,S in definition (4.2). Set Υl

k(S) = {κS1 , . . . , κSd }, d = d(k, l, S)
from (25), and define

κ̌Si :=
d∑
j=1

aSijκ
S
j + η , η ∈ Span

 ⋃
S′⊂S,S′ 	=S

Ξlk(S
′)

 ,

where AS := (aSij) ∈ Rd,d is to be regular. Please note that this matrix
takes into account switching from one basis of DP i−lk−i+l(S) to another
in definition 4. Then the new set of degrees of freedom

Ξ̌lk(T̂ ) := {κ̌Sj , 1 ≤ j ≤ d(k, l, S), S ∈Mi(T̂ ), l ≤ i ≤ n}
meets all requirements, in particular locality as

Span
{

Ξlk(S)
}

= Span
{

Ξ̌lk(S)
}
∀S ∈Mi(T̂ ), l ≤ i ≤ n . (27)

The entire transformation can be represented by a regular square
matrix A with diagonal blocks AS . If the d.o.f. are arranged according
to the dimension of the sub-simplices that support them, this matrix
becomes block-triangular. Observe that %Υl

k(S) = %Υ̌l
k(S) and so (25)

represents an invariant for possible sets of d.o.f. on T̂ . The numbers
for n = 3 are listed in table 2. A message is that by no means degrees
of freedom can be supported on S ∈Mi(T̂ ), if i > l + k.

Example. Consider second order edge elements, i.e. n = 3, l = 1,
k = 2. On each edge three degrees of freedom are located, whereas
each face holds six of them and three belong to the tetrahedron. An
admissible transformation of degrees of freedom can be done in the
following fashion: Incorporate into the degrees of freedom on faces
those on the edges and enhance the volume-d.o.f.s by any contribution
of other d.o.f.

Given global degrees of freedom, canonical interpolation operators
(also called nodal projectors)

Πl
k : Dl

0(Ω) �→ X l
k(Ω;Th)

are declared by assigning to a continuous differential form that unique
discrete form with the same nodal values

κ(ω −Πl
kω) = 0 ∀κ ∈ Ξlk(Th,Ω) .
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k 0 1 2 3 4 5 6
l = 0 vertices 1 1 1 1 1 1 1

edges 0 1 2 3 4 5 6
faces 0 0 1 3 6 10 15
cell 0 0 0 1 4 10 20

l = 1 edges 1 2 3 4 5 6 7
faces 0 2 6 12 20 30 42
cell 0 0 3 12 30 60 105

l = 2 faces 1 3 6 10 15 21 28
cell 0 3 12 30 60 105 168

Table 2. Numbers of d.o.f. associated with subsimplices for tetrahedral
discrete differential forms.

Owing to (27), any suitable set Ξlk(Th,Ω) yields the same projector as
they all span the same space of functionals. So Πl

k is well defined even
if we are sloppy about the concrete set Ξlk(Th,Ω). Locality of degrees
of freedom makes the nodal interpolation operator commute with the
trace onto a collection of sub-simplices. For the reference simplex and
the associated local projector Π̂l

k this can be stated as

tS ◦ Π̂l
k = Π̂l

k(S) ◦ tS , ∀S ∈M(T̂ ) , (28)

where Π̂l
k(S) is the nodal projector Π̂l

k(S) : Dl
0(S) �→ X l

k(S).
Another important consequence of the choice of the global degrees

of freedom is the “commuting diagram property”:
Theorem 4.5 (Commuting diagram property) Given the above

definitions of the spaces and the degrees of freedom the following
diagram commutes:

Dl
1(Ω) d−−−→ Dl+1

0 (Ω)

Πlk

# #Πl+1
k

X l
k(Ω;Th)

d−−−→ X l+1
k (Ω;Th)

Proof. To begin with, we remark that the statement of the theorem
is purely local and affine invariant. Hence, proving it for the reference
element T̂ and the associated nodal projection Π̂l

k will do. We use the
set Ξlk(T̂ ) provided by definition (4.2).
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For ω ∈ Dl
∞(T̂ ), 0 ≤ l < n, we set π := ω − Π̂l

kω. By the
definition of the nodal interpolation operator we see that for o ∈Mi(T̂ ),
l ≤ i ≤ n, ∫

o

π ∧ η = 0 for all η ∈ DP i−lk−i+l(o) . (29)

The remainder of the proof relies on the same ideas as the proof
of Theorem 4.4: Integrating by parts we get for η ∈ DP i−l−1

k−i+l+1(o),
l + 1 ≤ i ≤ n, o ∈Mi(T̂ )

∫
o

dπ ∧ η =
∫
o

d (π ∧ η) − (−1)l
∫
o

π ∧ dη .

The second integral evaluates to zero as dη ∈ DP i−lk−i+l(o). The first
term is eligible for an application of Stokes’ theorem:∫

o

d (π ∧ η) =
∫
∂o

π ∧ η

Obviously ∂o ∈ Mi−1(T̂ ) for o ∈ Mi(T̂ ), so that (29) also forces the
first term to vanish. Thus follows

Π̂l+1
k d

(
ω − Π̂l

k ω
)

= 0 ,

and, since d
(
Π̂l
k ω

)
∈ X l+1

k , we obtain through the unisolvence of the
degrees of freedom

Π̂l+1
k (dω) = d

(
Π̂l
k ω

)
. (30)

Taking into account that nodal values are left unchanged by canonical
affine transformations, we get (30) for every element and, finally, for
the entire finite element spaces. ✷

An immediate consequence of this theorem should be mentioned:
Corollary 4.6 The nodal interpolation operators preserve the

kernels of the external derivative, i.e.

dω = 0 for ω ∈ X l
k(Ω, Th) =⇒ d

(
Πl
k ω

)
= 0
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A second corollary to theorem (4.5) has to do with the p-
hierarchical splitting of higher order finite element spaces. It is naturally
induced by the family of nodal interpolation operators parameterized
by the polynomial order k. Denote the p-hierarchical components by

X̃ l
k(Ω;Th) :=

(
Πl
k −Πl

k−1

)
X l
k(Ω;Th) (k ≥ 1) . (31)

Corollary 4.7 With the notations introduced above we have

d X̃ l
k(Ω;Th) ⊂ X̃ l+1

k (Ω;Th) ,

i.e. the exterior derivative respects the p-hierarchical splitting.

5. HIERARCHICAL BASES

Remember that fixing the set Ξlk(T̂ ) amounts to fixing a basis Bl
k :=

{βκ, κ ∈ Ξlk(T̂ )} of X l
k(T̂ ) by duality, i.e. κ′(βκ) = δκ,κ′ , where δ is

Kronecker’s symbol. In the sequel I am taking for granted that Ξlk(T̂ )
is at our disposal.

Above we have investigated admissible transformations of
Ξlk(T̂ ) → Ξ̌lk(T̂ ), which directly translate into changes of bases Bl

k →
B̌l
k. To explain the mechanism, let me pick some sub-simplex S of T̂ .

We have seen that any transformation leaves Span
{
Ξlk(S)

}
invariant.

A basis form βκ belonging to a degree of freedom κ ∈ Ξlk(T̂ ) will
therefore be mapped into another form β̌ that satisfies

∀S ∈M(T̂ ), κ �∈ Ξlk(S) : ∀κ′ ∈ Ξlk(S) : κ′(β̌) = 0 .

Equivalently, due to (23),

S ∈M(T̂ ) , κ ∈ Υl
k(S) ⇒ tS′βκ = 0 ∀S′ ∈M(T̂ ), S �⊂ S′ .

After all, we have found invariant subspaces

Y l
k(S) := {ω ∈ X l

k(T̂ ), tS′ω = 0 ∀S′ ∈M(T̂ ), S �⊂ S′}

with respect to legal changes of bases. A similar insight can be
gained from the matrix description of the transformation Ξlk(T̂ ) →
Ξ̌lk(T̂ ) through the matrix A (see Sect. 4). If the bases inherit the
ordering of the degrees of freedom, the corresponding change of bases
is described by the transposed matrix AT . Recall that A could be
rearranged to become block-triangular. Eventually, this means that
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a basis form βκ, κ ∈ Υl
k(S) can undergo only modifications through

adding contributions from Y l
k(S).

Corollary 5.1. Under admissible transformations the set
{βκ, κ ∈ Υl

k(S)}, S ∈M(T̂ ), is converted into a set of representatives
of a basis of the quotient space

Ȳ l
k(S) := Y l

k(S)/{ω ∈ Y l
k(S), tSω = 0} .

Example. Let us take a look at higher order edge elements, i.e.
n = 3, l = 1, k ≥ 2. A local basis according to definition (4.2) covers
functions associated with edges, faces, and the entire reference element.
During a legal change of bases, the functions at a single edge can
be combined with each other and augmented by any contributions
from functions belonging to adjacent faces and T̂ . Basis functions at
a face, apart from mixing them, can only receive contributions from
the interior. Finally, the interior basis functions can only be reshuffled
among themselves.

In addition, the union of all sets of representatives of bases of
Ȳ l
k(S), S ∈ M(T̂ ), will yield a valid basis of X l

k(T̂ ). As Ȳ l
k(S) is

isomorphic to H l
k(S) := tSY l

k(S) we only have to come up with bases
of H l

k(S), S ∈ M(T̂ ) and some extension procedure in order to find a
basis of X l

k(T̂ ).
Example. Barycentric coordinates are a convenient tool for stating

discrete differential forms [16]. They do not violate the coordinate-
free setting, because they are a completely affine concept. Writing
λ0, . . . , λn for the the barycentric coordinate functions with respect
to T̂ , we find for k, l ∈ N0, k + l ≥ n,

{ω ∈ DP lk+1(T̂ ), t
∂T̂
ω = 0} = Span


pI(λ0, . . . , λn)λI′dλI ,
I ′ ∪ I = {0, . . . , n},
%I = l, pI ∈ P̃ k+l−n(Rn+1)

 ,

(32)

where λI′ =
∏
j∈I′ λj , dλI = λi1 ∧ . . . ∧ λil . Hence, we can write

γ ∈ H l
k(S), S ∈Mi(T̂ ), in the form

γ =
∑

I⊂{j0,... ,ji}
pI(λj0 , . . . , λji)λI′dλI

where λj0 , . . . , λji are those barycentric coordinates of T̂ that do not
vanish on S. This representation instantly provides an extension to a
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γ ∈ Y l
k by simply reinterpreting the barycentric coordinate functions

of S as those of T̂ .
I aim at finding a p–hierarchical basis for X l

k(T̂ ). This means
that the basis can be split into subsets spanning X̃ l

k(T̂ ). The latter
space is defined according to (31). In light of (28) and the preceding
considerations, I first focus on hierarchical bases forH l

k(S), S ∈Mi(T̂ ),
l ≤ i ≤ n. Fix S ∈ Mi(T̂ ) and consider the direct p–hierarchical
decomposition

H l
k(S) =

k∑
p=0

H̃ l
p(S) , H̃ l

p(S) := (Π̂l
p(S)− Π̂l

p−1(S))H l
k(S) for p > 0 .

Then, for p > 0 pick a closed form ω ∈ H̃ l
p(S). If i = l, the fact that

ω belongs to a genuine hierarchical surplus (p > 0) implies
∫
S ω = 0.

Thus, we can apply (20) which bears out the existence of η′ ∈ H l−1
p (S)

such that dη′ = ω. Then, set

η := (Π̂l−1
p (S)− Π̂l−1

p−1(S))η′ .

By definition η ∈ H̃ l−1
p (S) and from corollary (4.7) we learn that

dη = (Π̂l−1
p (S)− Π̂l

p−1(S))ω = ω .

The bottom line is that the exact sequence property even carries over
to the higher order components of the p–hierarchical splitting ofH l

k(S).
We introduce a further direct splitting

H̃ l
p(S) = d(H̃ l−1

p (S))⊕ C̃ lp(S) = d C̃ l−1
p (S)⊕ C̃ lp(S)

without worrying about the details of the complement spaces C̃ lk, whose
mere existence will be needed. The dimensions of these spaces satisfy
the simple recurrence

dim C̃ lp(S) + dim C̃ l−1
p (S) =

dim H̃ l
p(S) = %Υl

p(S)− %Υl
p−1(S) =

(
i

l

)(
p+ l − 1
i− 1

)
,

and in addition dim C̃ lp(S) = 0, if l > i or p + l < i, where i is the
dimension of S. For n = 3 the dimensions are listed in table 3

In particular, we conclude
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p [0] 1 2 3 4 5 6
l = 0 vertices [1] 0 0 0 0 0 0

edges [0] 1 1 1 1 1 1
faces [0] 0 1 2 3 4 5
cell [0] 0 0 1 3 6 10

l = 1 edges [1] 0 0 0 0 0 0
faces [0] 2 3 4 5 6 7
cell [0] 0 3 8 15 24 35

l = 2 faces [1] 0 0 0 0 0 0
cell [0] 3 6 10 15 21 28

Table 3. Dimensions of C lp(S) for a tetraahedron.

• dim C̃ip(S) = 0, i.e. for p > 0 the space H̃ i
p(S) contains only closed

forms.
• dim C̃i−p−1

p (S) = 0, i.e. H̃ i−p
p (S) does not contain any non-trivial

closed forms.
Example. Let us revisit the example in section 1, i.e. n = 2, k = 1,

and l = 1. We want to find a basis for C̃1
1 (T̂ ) in this case. The desired

basis forms must have non-vanishing contributions from D̃P
1

2(T̂ ) and

those contributions have to be in the range of k0(H̃N
2

1(T̂ )). Thus, the
second order parts of the basis forms have to comply with (19). In
addition, traces on ∂T̂ have to be zero. Taking into account (32), this
restricts the search to the set

{ω = Aλ1λ2dλ0 +Bλ0λ2dλ1 + Cλ0λ1dλ2} .

Pick T̂ as reference triangle with respect to the chosen coordinates, i.e.
T̂ := {x ∈ R2, 0 ≤ x1, x2 ≤ 1, x1 + x2 ≤ 1}. Then λ0 = 1 − x1 − x2,
λ1 = x1, and λ2 = x2. In the canonical basis for 1-forms we can express
ω by

ω = (B − (A+B)x1 −Bx2)x2dx1 + (C − Cx1 − (C +A)x2)x1dx2

A,B,C ∈ R .

Equating the coefficients for corresponding monomials of order 2, we
get (with α1, α2 from (19))

1
3
α1 = A+B ,

1
3
α2 = B ,

1
3
α1 = −C ,

1
3
α2 = −(C +A) .
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A solution exists for any α1, α2 ∈ R, e.g. α1 = 3, α2 = 0 leads
to A = 1, B = 0, C = −1, whereas α1 = 0, α2 = 3 means
A = 1, B = −1, C = 0. Then we arrive at the following two basis
forms for C̃1

1 (T̂ )

β1 = −x1x2dx1 + (x1 − 1)x1dx2 , β2 = (1− x2)x2dx1 − x2x1dx2 .

Here no hierarchical surplus has to be computed, as there are no non-
trivial discrete 1-forms of order 0 that are supported in the interior of
a triangle.

To continue with the construction of hierarchical bases, we select
bases {ζ l,Sp,1 , . . . , ζ

l,S
p,K}, K = K(l, p, S) := dim C̃ lp(S), of C̃ lp(S). The

freedom at this stage will mean that many different instances of p-
hierarchical bases are possible. Since H l

k(S) := tSY l
k(S) these basis

forms can be extended to forms {γl,Sp,1, . . . , γ
l,S
p,K} in Y l

k(S). Finally set

βl,Sp,j := (Π̂l
p − Π̂l

p−1)γ
l,S
p,j , 1 ≤ j ≤ K .

As Y l
k(S) is invariant under the nodal projectors Π̂l

p, 0 ≤ p ≤ k, the βl,Sp,j
still belong to Y l

k(S). Thanks to (28) we know tSβ
l,S
p,j = ζ l,Sp,j . In sum,

βl,Sp,1, . . . , β
l,S
p,K are representatives of linearly independent elements of

Ȳ l
k(S) and they respect the hierarchical decomposition.

Now we are in a position to describe the hierarchical bases for
X l
k(T̂ ) explicitly through

Bl
0 ∪

{
βl,Sp,j , dβ

l,S
p,m, 1 ≤ j ≤ K(l, p, S), 1 ≤ m ≤ K(l − 1, p, S),

S ∈Mi(T̂ ), 0 ≤ i ≤ n, 1 ≤ p ≤ k

}
.

(33)

Linear independence of the forms is clear from the way they
have been constructed. As well, their construction guarantees the
locality property. However, can any ω ∈ X l

k(T̂ ) be expressed as a
linear combination of forms from (33)? Start with the p–hierarchical
decomposition of ω

ω = ω0 + . . .+ ωk , ω0 := Π̂l
0ω , ωp := (Π̂l

p − Π̂l
p−1)ω, 0 ≤ p ≤ k .

Then pick S ∈ Ml(T̂ ) and express tSωp ∈ X̃ l
p(S) through

{ζ l,Sp,1 , . . . , ζ
l,S
K,p, dζ

l−1,S
p,1 , . . . , dζ l−1,S

M,p }. Subtracting the same linear

combination of {βl,Sp,1, . . . , β
l,S
p,K , dβ

l−1,S
p,1 , . . . , dβl−1,S

p,M } from ωp yields
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ω′p ∈ X̃ l
p(T̂ ) with vanishing trace on S. Carrying out the same

procedure for the other sub-simplices in Ml(T̂ ) results in a form
ω̄ ∈ X̃ l

p(T̂ ) whose trace on all l-dimensional subsimplices is zero.
Choosing S ∈ Ml+1(T̂ ) this means tSω̄ ∈ H l

p(S) and we can repeat
the construction for l+ 1-dimensional sub-simplices. This can be done
until we reach S = T̂ . I point out that a closed ωp, p ≥ 1, will
finally be represented solely through closed basis forms. This should
be remembered as an interesting feature of (33).

As the hierarchical basis (33) complies with all requirements,
it induces valid local degrees of freedom and, thus, a corresponding
basis of the global space X l

k(Th,Ω). The global basis retains all affine-
invariant, say all essential, features of the local hierarchical basis of
X l
k(T̂ ):

Theorem 5.2 Given a closed discrete differential form in the
hierarchical surplus space X̃ l

p(Th,Ω), p ≥ 1, it can be written as linear
combination of closed forms with local support.

Proof Everything has already been settled by the above
considerations. The local contributions are spawned by exterior
derivatives of hierarchical basis functions for discrete l − 1-forms.✷

Remark. Recursion lends itself for the practical construction of
the hierarchical basis: Build hierarchical bases H l

k(T̂ ) for in dimensions
l, . . . , n−1 first. Then extend them to elements of the hierarchical basis
of X l

k(T̂ ). Extension is straightforward, if barycentric coordinates are
used to represent the differential forms.

The hierarchical basis is also the key to building spaces of discrete
differential forms on Th, whose polynomial degree may vary from
element to element. For each T ∈ Th we fix pT ∈ N0, which stands
for the desired polynomial degree on that particular element. Then
define

pS := min{pT , S ⊂ T} , S ∈M(Th) . (34)

as the polynomial degree associated with each sub-simplex S of the
mesh. As is the case with any admissible basis, the forms in the global
hierarchical basis of X l

k(Th,Ω) belong to exactly one sub-simplex of
Th. The global p–adaptive basis is then given by

Bl
{pT } :=

⋃
S∈M(Th)

{ Basis l-forms of degree ≤ pS associated with S } .

Of course, the global p–adaptive space of discrete l-forms is defined as

X l
{pT }(Ω, Th) := Span

{
Bl
{pT }

}
.
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Theorem 5.3 If Ω is contractible, the spaces X l
{pT }(Ω, Th), 0 ≤

l ≤ n, possess the exact sequence property.
Proof. If ω ∈ X l

{pT }(Ω, Th) is closed we can split it into two closed
forms according to

ω = ω0 + ω̃, ω0 = Πl
0 .

As seen before, the hierarchical surplus ω̃ can only comprise closed basis
forms of Bl

{pT } that are derivatives of hierarchical basis l − 1-forms of
the same polynomial degree and belonging to the same sub-simplex:

∃η ∈ X l−1
{pT }(Ω, Th) : ω̃ = dη .

The existence of a discrete potential for lowest order discrete
differential forms (Whitney-forms) is a result from topology.✷

Remark. It turns out that the existence of discrete potentials is
crucial for the discrete compactness property of edge elements (discrete
1-forms) [21, 10, 5]. Discrete compactness is a necessary condition
for the convergence of Galerkin finite element solutions of eigenvalue
problems.

Of course, Bl
{pT }(Ω, Th) is not the only possible basis for X l

{pT }
and there is ample room for better choices following the prescriptions
from the beginning of the paragraph. For finite element applications
changing to another basis is even recommended in order to improve
the condition number of the resulting system of linear equations [2].
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