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COVARIANT ISOTROPIC CONSTITUTIVE RELATIONS
IN CLIFFORD’S GEOMETRIC ALGEBRA
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Abstract—Constitutive relations for isotropic material media are
formulated in a manifestly covariant manner. Clifford’s geometric
algebra is used throughout. Polarisable, chiral and Tellegen medium
are investigated. The investigation leads to the discovery of an
underlying algebraic structure that completely classifies isotropic
media. Variational properties are reviewed, special attention is
paid to the imposed constraints on material parameters. Covariant
reciprocity condition is given. Finally, duality transformations and
their relevance to constitutive relations are investigated. Duality is
shown to characterise ‘well-behavedness’ of medium which has an
interesting metric tensor related implication.
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1. INTRODUCTION

Maxwell equations are usually supplemented by constitutive relations,
for these provide the information about the surrounding medium. In
the Minkowski space constitutive relations take the bivector (or 2-form)
F ∼ (E,B), and map it to the bivector (2-form) G ∼ (H,D).

However, given their importance in practical problem solving,
constitutive relations as well as their representations are less
frequently explained in physics textbooks than what one might expect.
Constitutive relations appear to be more or less a engineer’s cup of tea,
for it is usually antenna and microwave engineering oriented works
that discuss them (see for example the numerous references listed in
[1]). As these works describe constitutive relations within the Gibbs–
Heaviside vector algebra requiring an inertial frame to be specified,
physicists have not adopted them widely. Therefore we look for a
covariant description that satisfies the engineer and the physicist alike.
The Minkowski space is of course the space to be used, for constitutive
relations suggest that Maxwell equations are covariant under Lorentz
transformations [2, 3]. In this study we give manifestly covariant
representations of a few important isotropic media and discuss their
implications. We also hope that the geometric substance of constitutive
relations becomes more apparent with our treatment. To convey this
‘geometricity’ of constitutive relations more efficiently we adopt the
language of Clifford’s geometric algebra, which we will introduce in
Section 2. The practical results are given in the examples in Section 3.
For the benefit of more theoretically inclined readers, we discuss briefly
variational aspects in Section 4 and duality properties in Section 5. The
underlying algebraic structure is exposed in the end of Section 3, and
the reciprocity conditions are reviewed in the latter part of Section 4.

2. ELECTROMAGNETISM IN CLIFFORD’S
GEOMETRIC ALGEBRA

Constitutive relations are much easier to write down explicitly, if they
are assumed to be linear, and this is normally done in the literature [3].
We make that assumption too. Furthermore, we discard the distinction
between vectors and forms, for we work entirely within a known metric.
This identification of vectors with their duals makes the Clifford’s
geometric algebra –or Clifford algebra for short– an obvious choice
for our working environment. We work within an algebra generated by
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basis vectors e1 . . . e4 with the relations 1

e2
1 = e2

2 = e2
2 = 1, e4 = −1

eλeν = −eνeλ for λ �= ν.

This algebra bears the label C�3,1, which means that three of the basis
vectors have norm 1 and the remaining one has −1. For a quick
reference, we have explained in Appendix A the different products
of Clifford algebra. Some reading suggestions are also listed there.

The electromagnetic field can be written as two bivectors2 F and
G

F =
1
2
F λνeλν , G =

1
2
Gλνeλν , (1)

where we have used the summation convention. F and G satisfy
Maxwell equations

∂ ∧ F = 0, (2)
∂ ∧G = J (3)

where Dirac operator ∂, when given in its space–and–time-component
form, reads ∂ = (∇ − c−1e4 ∂t). J is a trivector representing electric
charges and currents.

Constitutive relations in the context of Clifford algebra have been
discussed earlier by Hillion in ref. [6], but his approach differs from
ours, being concerned with the well-posedness of the problem. We will
focus on the algebraic properties of the constitutive operator.

The constitutive operator χ̆ maps F to G:

G = χ̆ F. (4)

The reason why we mark χ with the accent ˘ will become clear in a
moment.

The case of isotropic media may look simple, but there is in fact
more than one way to connect F to G. Therefore χ̆ must be constructed
in a manner that allows such a diverse media as the familiar dielectric
materials and the exotic chiral and Tellegen materials to be equally well
represented. Even in the absence of polarisable materials there remains
a constitutive map, namely the vacuum constitutive map. The origin
1 The notation we use is mainly borrowed from ref. [9]: Vectors and basis multivectors, e.g.
e1e2 = e12, are in boldface, but we deviate from ref. [9] by denoting all other multivectors
with unslanted caps, e.g. F, G, I. Scalars and unspecified elements of algebra are both in
lowercase, e.g. c, u, but it should be clear from the context which ones are meant. Ref. [5]
uses identical notation.
2 In this paper we do not observe the difference between inner and outer orientations. For
nice pictorial expositions, see [4].
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of this map might be the metric itself [3, 7], but in our case it suffices
to say that the metric transforms F to G via the Hodge mapping � [8,
p. 28]:

G =
√

ε0
µ0

� F, (5)

where the Hodge mapping has the explicit form

�F = F̃ I. (6)

The factor I gives the orientation of the space in a form of oriented
volume element, in C�3,1 I = e1e2e3e4. The ‘tilde’ operation reverses
the order of elements in Clifford products [9, pp. 14–15], e.g. (e123 +
e1)∼ = e321 +e1. In the Minkowski space the Hodge operation has the
closure property �� = −id when operating on bivectors.

We find the Hodge mapping to be convenient in relating different
formulations of Maxwell equations. The formulation that Post in ref.
[3, pp. 53–56] adopts can translated to our notation as follows:

∂ ∧ F = 0, ∂ G = J,

where G = − � G and G = �G. For sources, J = − � J and J = − � J.
The constitutive mapping χ takes the bivector F to the bivector G:

G = χF.

Comparison with (4) gives the relation

χ̆ = �χ.

Hodge mapping makes also an appearance in the so-called duality
rotation

F′ = cosα F + sinα � F, (7)

which leaves the source-less vacuum Maxwell equations as well as the
vacuum energy–momentum tensor invariant. Here α has no simple
geometric interpretation, it gives just a measure of the amount of the
rotation that the field has undergone in the abstract space of (F, �F).
The importance of duality rotation was probably first appreciated
in the 20’s by Rainich [10], and later elaborated and put in to a
broader context by Misner and Wheeler [11]. In addition to the
invariance property above, the duality rotation comes in handy when
characterising media.
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3. CLASSIFYING MEDIA

We are of course aware that an isotropic polarisable medium becomes
bi-anisotropic when observed in a frame where the medium appears
to be moving [19, pp. 594–595], and in order that we can give a
covariant description of isotropy, we define an isotropic medium to
be a medium, where the only discriminate direction is the medium’s
four-velocity. The definition works well in a macroscopic scale, but
becomes rather impractical in the other end of the scale, where we
have difficulties to distinguish between random thermal movements
and externally induced displacements.

The role of four-velocity is best explained by studying a few
examples, which also serve as a basis of our classification of media:

Magneto–dielectric medium

Basic isotropic magneto–dielectric medium has a constitutive relation
of the form

G =
1
2
(c ε + c−1µ−1) � F +

1
2

(c ε− c−1µ−1)w−1 � F w, (8)

where w = γ �v + γ c e4 is the four-velocity of the medium, relative
velocity �v ∈ R3 and γ = 1/

√
1− v2/c2. When the medium appears to

be stationary, the presently co-moving observer sets w = c e4 in (8)
and thus recovers the usual magneto–dielectric constitutive relations

G =
1
2
(c ε + c−1µ−1) � F +

1
2

(c ε− c−1µ−1)e−1
4 � F e4, (9)

or in a traditional form (cf. Appendix 6) D = εE, H = 1
µ B.

In this particular case the term e−1
4 �Fe4, or reflection of �F with

respect to e4, on the right hand side of (9) can be interpreted as a
space conjugation (inversion) sending

eiej → (−ei)(−ej) = eiej , eie4 → (−ei)e4 = −eie4

where i, j ∈ {1, 2, 3}.
In passing, we note that it was probably Jauch and Watson in 1948

who first wrote magneto–dielectric medium’s constitutive relations in
the form where the medium’s four-velocity appears explicitly, eqn. 9 in
ref. [12]. Thus our (8) can be viewed as a Clifford algebra version of
their equation. Their constitutive relations, written in index notation,
have appeared in some textbooks, e.g. [13].
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We can bring relations (8) into an even neater form, for

w−1(w−1Fw)w = rw(rwF) = rwrwF = F,

which means that algebraically reflections with respect to w, denoted
as rw, behave like the so-called unipodal numbers [15], viz. rwrw = 1.
We can then immediately conceive functions with unipodal arguments,
especially exponential ones:

exp(rwφ) = coshφ + rw sinhφ. (10)

As a natural consequence of these observations, we define

coshφ =
1
2
(εr + µ−1

r ), sinhφ =
1
2
(εr − µ−1

r ), (11)

and thus (8) becomes

G =
1
η0

erwφ � F, η0 =
√

µ0/ε0 (12)

Chiral medium

Isotropic chiral medium contains handed inclusions of similar
handedness mixed randomly in a host material (racemic mixtures
are not considered here). These inclusions effect a coupling between
dynamic electric and magnetic fields. We write the corresponding
constitutive relations as

G =
1
η0

erwφF + Ξ rwF. (13)

Here Ξ is an operator, which in 3D formulation involves a time
derivative [14]. What kind of time derivative should Ξ contain, if all
the observers are to concur with it? Luckily, we do have a common
time standard, the proper time τ . We write

Ξ = ξ
∂

∂τ
= ξ∂τ , (14)

where ξ is a parameter measuring the strength of chirality.
In traditional 3D formulations of electromagnetism we have tacitly

assumed a harmonic time variance, which suggests the use of quantities
such as jω or j in (14), but here we are working in a geometric algebra,
and hence every quantity must have a geometric content. We could
consider a structure like C ⊗ C�3,1, and thus readily adopt j from 3D
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theory, but the imaginary numbers introduced in this way have no clear
geometric meaning. On the other hand, C�3,1 itself contains several
copies of complex fields, i.e. fields with generators

{1, e23}, {1, e31}, {1, e23}, {1, e123}, {1, e1234},

and these should be considered as possible substitutes for the
traditional complex numbers. The choice turns out to be particularly
simple in the case of circularly polarised waves. Suppose that x
is a space–time position and k a (constant) wave four-vector, then
the circularly polarised plane wave solution of homogeneous Maxwell
equations becomes

F(x · k) = e±I(k·x)F0 (15)

where F0 is a constant bivector, I = e1234, and ± signifies the two
possible helicities. Hence

∂τF(x · k) = ±e±I(k·x)I ∂τ (x · k)F0 = ±e±I(k·x)I (w · k)F0

= ±I (w · k) e±I(k·x)F0 = ±I (w · k) F(x · k). (16)

Therefore we find it convenient to set ∂τ = ±(w ·k) I. The sign should
be chosen to reflect the correct handedness. e1234 is a good candidate
for an ’imaginary number’ in view of the fact it is also a Lorentz-
invariant.

Comparing now (6) and (14) shows that for circularly polarised
waves Hodge and chirality operator are almost the same operator. This
affects the Euler–Lagrange equations as we shall see later.

Tellegen medium

In 1948 Tellegen [16] introduced a new device for electric circuits:
the gyrator, which ’gyrated’ a current into a voltage and vice versa.
Tellegen also suggested that such a device could be made of material
with relations

D = ε′E + γH, B = µH + γE, γ2 ≈ εµ,

which translates to

G =
1
η0

erwφ � F + ψ F, (17)

in our covariant notation. Here ε = ε′ − γ2/µ and ψ = γ/µ [1, p. 309].
We will discover in Section 4 how the ’Post-constraint’ [3, eqn. (6.18)]
results from (17).
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Algebraic structure

When we look at the forms of (8), (13) and (17) a pattern begins to
emerge: a most general isotropic medium has the form

G = a1 F + a2 rwF + a3 � F + a4 rw � F. (18)

Clearly, we have exhausted all possible combinations of � and rw, which
we take to be basis vectors of a new, induced algebra. Not surprisingly,
this new algebra is of Clifford variety, since it is generated by {�, rw}
with relations

� rw = −rw �, r2w = 1, �2 = −1,

i.e. we have here C�1,1 (the unipodal number system mentioned above
is in fact C�1,0 and is contained in C�1,1). Thus all isotropic media can
be classified by the four-dimensional algebra C�1,1.

4. VARIATIONAL ASPECTS

Let us briefly investigate variational implications of our constitutive
relations. For a moment, assume that Ξ behaves like a scalar (i.e.
commutes with every element of algebra). Moreover, assume that (2)
implies

F = ∂ ∧A, (19)

where A is a four-potential and thus the Lagrangian of the
electromagnetic field with sources is a quadrivector

L =
1
2
(∂ ∧A) ∧G(A)−A ∧ J, (20)

where G assumes the form (we use Thirring’s Lagrangian [17, p. 46]
with suitable modifications)

G(A) = ψ ∂ ∧A + Ξ rw∂ ∧A +
1
η0

erwφ � ∂ ∧A. (21)

To be precise, our assumption (19) is true only for star-like regions [18,
pp. 38–46], but this should not be too restricting, for we can consider
regions that are locally star-like.

Variation A→ A + δA gives

δW =
∫

dV[ δA ∧ ∂ ∧ (
1
η0

erwφ � ∂ ∧A)− δA ∧ J
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+∂ ∧ (δA
1
η0

erwφ � ∂ ∧A) + ψ ∂ ∧ (A ∧ ∂ ∧ δA) ]

=
∫
V
dV δA ∧ (∂ ∧ 1

η0
erwφ � ∂ ∧A− J)

+
∮
∂V

dS δA
1
η0

erwφ � ∂ ∧A +
∮
∂V

dSψ δA ∧ ∂ ∧A .

In above we made use of Stokes’ theorem∫
V
dV∂ ∧ f =

∮
∂V

dS f, (22)

where dV is of grade n and f is any multivector valued function of
grade n− 1. Here n = 4, dV = dx dy dz cdt I = dx dy dz cdt e1234, and
dS is an oriented differential surface element of grade n− 1 = 3 and of
compatible orientation [9, p. 261]. Note that δW is a scalar quantity.
Furthermore, we have used identities

A ∧ �B = B ∧ �A, (23)
A ∧ rwB = −B ∧ rwA, (24)

A ∧ rw � B = B ∧ rw � A, (25)

whenever A and B are any bivectors in C�3,1. The second and third
relation are peculiarities of dimension n = 4, while the first is valid for
any pair of multivectors of similar, homogeneous degree and for any
dimension [20, pp. 121–122].

We immediately notice that chirality does not contribute to the
variation of the action W , and in fact this can be seen already from
(21), because (∂∧A)∧rw(∂∧A) = 0 for any vectors A,w ∈ C�3,1. Thus
Ξ has to more be than just a scalar and chirality –as is well-known–
a non-instantaneous effect. Making a substitution Ξ→ ±ξ(w · k)e1234

would immediately correct the situation. The chiral term would then
give a non-vanishing contribution to the volume integral.

If the variation is to vanish for all δA with a boundary value
δA|∂V = 0, the integrand of the volume integral must satisfy

∂ ∧ 1
η0

erwφ � F− J = 0, (26)

and thus (3) is recovered (the surface integrals over ∂V do not
contribute to (26) due to the condition δA|∂V = 0). As the chiral
and Tellegen parameter do not appear in (26) Post concluded that
for instantaneous and local effects it is economical to demand that
χ[λνσκ] = 0, or to put it differently, it does no harm to set Ξ = ψ = 0,
when Ξ and ψ are scalar quantities.[3, Ch. VI, §2]
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However, this may not be the complete story. It should be noted
that from the set of electromagnetic Lagrangians we picked just one
possible Lagrangian, other choices could have been made. Our choice
was dictated by convenience and tradition. Furthermore, we have not
discussed Noether currents. There might still be contribution to the
conserved observables as noted by Thirring in Remarks (2.1.6) and
(2.1.8) of [17]. The contribution to the canonical energy–momentum
tensor is proportional to ∂ ∧ ((e A) ∧ F), where e is a vector field
generating the Lie derivatives. The term is unfortunately gauge–
dependent. The meaning and significance of such a term should be
duly investigated.

Reciprocity

We conclude this section by briefly checking the reciprocity properties
of our constitutive mapping χ̆. The covariant form of reciprocity
condition for fields F and G is∫

V
dV(Fa ∧ rwGb − Fb ∧ rwGa) = 0, (27)

which corresponds to the condition (15) in [19, p. 402]. As before, w
is the medium’s four-velocity. Now set

Ga,b = ψ Fa,b + Ξ rwFa,b +
1
η0

erwφ � Fa,b, (28)

where Ξ may be a scalar or a scalar multiple of I, and use the conditions
(23)–(25). The integrand reduces to

Fa ∧ rwψFb − Fb ∧ rwψFa = 2ψ Fa ∧ rwψFb �= 0,

therefore a medium with a Tellegen parameter present is not reciprocal.

5. DUALITY ROTATION

We return now to the duality rotation mentioned earlier. The general
duality transformation is of the form(

F′
G′

)
=

(
a b
c d

) (
F
G

)
, (29)

where a, b, c, d are just scalars. The associated general linear duality
group can be restricted with the vacuum constitutive relations [2, Ch.
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9]: Set G = η−1
0 � F and assume that the relation holds for duality

transformed fields, G′ = η−1
0 � F′, hence(

F′
η−1
0 � F′

)
=

(
a b
c d

) (
F

η−1
0 � F

)
, (30)

substitute F′ in η−1
0 F′ and use the closure property �� = −id. In

addition to that, we want the energy–momentum tensor to be invariant
[11], so we choose the determinant of the matrix to be = 1. After re-
parametrisation we get(

F′
G′

)
=

(
cosα η0 sinα

−η−1
0 sinα cosα

) (
F
G

)
. (31)

Upon examination of (8), (13) and (17) we note that chiral and
magneto–dielectric constitutive relations behave essentially like the
Hodge mapping, that is, they have a similar closure property:

χ̆χ̆ = −a2 id. (32)

where a is a scalar factor with a dimension of admittance. However,
Tellegen medium does not behave so nicely: application of χ̆ twice
does not lead to identity (modulo a scalar factor). Thus chiral medium
and magneto–dielectric medium can always be incorporated in a new
dual operator, denote it with �′, and a general isotropic constitutive
mapping χ̆ can be split in two

χ̆ = a �′ +ψ, (33)

where �′�′ = −id., and ψ is the Tellegen parameter. In other
words, chiral parameter can be duality rotated away, whereas Tellegen
parameter not. This can be demonstrated by a straightforward
calculation: Transform both the fields and constitutive operator of
the Tellegen medium

G′ = (cosα + sinα�)(
1
η0

erwφ � +ψ)(cosα− sinα�) F′,

after some easy manipulations (remember that we can now use C�1,1)

G′ =
1
η0

coshφ�F′+
1
η0

sinhφ sin 2α rwF′+
1
η0

sinhφ cos 2α rw�F′+ψ F′,

whence it follows that there is no α which makes the Tellegen parameter
disappear.
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6. DISCUSSION

We saw that constitutive relations of isotropic medium give rise to
an induced Clifford algebra C�1,1. It is tempting to think that other
more complicated media induce these kind of algebraic structures. As
a consequence, it would be possible to classify media by the algebras
they induce. It is probably obvious but we nevertheless point out that
the classification of more general media involves higher dimensional
algebras. On the other hand, we noticed that constitutive mappings
of reciprocal and non-reciprocal media do not behave similarly, which
suggests that we could use this as an alternative way of classifying
media. Remembering that the reciprocity was related to the closure
property of constitutive mapping we can divide general isotropic media
in two classes, those that satisfy this property and those that do
not. This observation has some implications, for there is interesting
theory originating from the study of Yang–Mills-fields that says that
given a duality operator we can find a corresponding conformal class
of metric [21, 22]. The duality operator has to be sufficiently well-
behaved, among the requirements we find that the closure property
should be satisfied. Therefore magneto–dielectric medium as well as
chiral medium can be embedded in the (symmetric) metric tensor, but
Tellegen medium does not fit in.

Doubtless an alert reader has noticed that Tellegen medium has
been a subject of controversy for some time. Those who have missed
this discussion are referred to paper [23] and correspondence [24], for
instance. We hope that the variational derivation and the remarks
presented above have given new ideas.
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APPENDIX A. PRODUCTS OF CLIFFORD’S
GEOMETRIC ALGEBRA

The Clifford product of a vector x and any element u of Clifford algebra
can be written as

xu = x u + x ∧ u,

where denotes the left contraction and ∧ the exterior product. These
decrease and increase the grade, respectively. The left contraction can
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be defined by its characteristic properties [9, Ch. 3, Ch. 22]

x y = 〈x,y〉,
x (u ∧ v) = (x u) ∧ v + û ∧ (x v),
(u ∧ v) w = u (v w),

where 〈 , 〉 denotes an inner product which in this work is chosen to be
the usual dot product. Here we have also introduced a ’hat’-operation,
grade involution, which is an automorphism that reverses the direction
of every vector, for instance

̂(e1e2e3) = ê1ê2ê3 = (−e1)(−e2)(−e3) = −e1e2e3.

Contraction has an important ’duality’ property relating it to the
exterior product:

u v = (u ∧ (v I)) I−1,

where I is the highest grade element of the algebra, e.g. in C�3,1
I = e1234.

Of course, there exist a right contraction as well, but for this
work the left contraction is quite sufficient. See [9, Ch. 3] for the
properties of .

The exterior product and the left contraction can be reconstructed
from the Clifford product

x ∧ u =
1
2

(xu + ûx) , x u =
1
2

(xu− ûx) .

These reconstructions are from Riesz’s lecture notes, [25, pp.
61–67], which is also a good classic introduction (albeit notationally
old-fashioned) to Clifford algebra. For a modern introduction, one
might want to check Lounesto’s review [9]. Clifford algebra in
electrodynamics is developed carefully in refs. [26, 27]. Standard
references for Clifford algebra are [28, 29].

It is sometimes of interest to translate Clifford algebra products
to Gibbs–Heaviside vector calculus products. In order to do that, we
have to single out an inertial system, as explained in 6. Then we can
find the following relations between the cross product and the exterior
product (now I = e123):

x× y = (x ∧ y) I−1, x ∧ y = (x× y) I.

APPENDIX B. FIELD AND FLUX VECTORS

The electric field vector E can be found from F by choosing a particular
frame and measuring the electric field in that frame. As an algebraic
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procedure this amounts to choosing a basis V ′, identification of e4 ∈ V ′

with the observer, and left contracting F by c e4:

E = c e4 F.

The procedure can be repeated to yield H from G

H = c e−1
4 G = −c e4 G.

Electric and magnetic flux densities are a bit trickier, here we also have
to invoke the duality of vectors and trivectors:

B = �(e−1
4 ∧ F), D = �(e−1

4 ∧G).

Thus in an inertial frame F and G can be decomposed as3

F =
E
c
e4 −Be123, G = −H

c
e4 −De123.

We can say that we have split F and G in space and time components.
Similarly, for G we can write

G = De4 −
H
c

e123.
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