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Abstract–In this paper, we introduce a new classification scheme for
dual frequency polarimetric SAR data sets. A (6×6) polarimetric co-
herency matrix is defined to simultaneously take into account the full
polarimetric information from both images. This matrix is composed
of the two coherency matrices and their cross-correlation. A decompo-
sition theorem is applied to both images to obtain 64 initial clusters
based on their scattering characteristics. The data sets are then clas-
sified by an iterative algorithm based on a complex Wishart density
function of the 6 by 6 matrix. A class number reduction technique is
then applied on the 64 resulting clusters to improve the efficiency of the
interpretation and representation of each class characteristics. An al-
ternative technique is also proposed which introduces the polarimetric
cross-correlation information to refine the results of classification to a
small number of clusters using the conditional probability of the cross-
correlation matrix. The analysis of the resulting clusters is realized by
determining the rigorous change in polarimetric properties from one
image to the other. The polarimetric variations are parameterized by
8 real coefficients derived from the decomposition of a special unitary
operator on the Gell-Mann basis. These classification and analysis
schemes are applied to full polarimetric P, L, and C bands SAR
images of the Nezer forest acquired by NASA/JPL AIRSAR sensor
(1989).
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1. INTRODUCTION

The backscattering properties of a natural medium vary with the obser-
vation frequency according to its physical features, such as its structure
or its dimensions with respect to the radar wavelength. The scatter-
ing mechanism may remain almost unchanged for bare soil observation
at L and C bands, but may show a totally different aspect for for-
est remote sensing at P and C bands. Incident waves with different
wavelength interact with separate parts of a complex medium. The
purpose of multi-frequency analysis is to gather adequate information
from each data set.

Many algorithms have been developed to classify natural media us-
ing polarimetric synthetic aperture radar (POLSAR) data [1–5]. Sev-
eral approaches were derived to directly relate some basic character-
istics of the targets to elements of the polarimetric covariance matrix
[6–8]. More recently, polarimetric decomposition theorems were in-
troduced in order to investigate the intrinsic physical properties of a
natural medium by evaluating the underlying scattering mechanisms
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[9–12]. All these approaches realize an interpretation of the polariza-
tion of the backscattered wave, and establish a relation between the
medium physical properties and polarimetric transformations.

The use of multi-frequency polarimetric data sets has been shown
to increase the interpretation capabilities of quantitative remote sens-
ing of natural media [13, 14]. Some multi-frequency full polarimetric
classification approaches were developed using various types of algo-
rithms and techniques based on neural networks, fuzzy iterative clas-
sifier, statistical segmentation, etc., [15–17]. Statistical classification
using multivariate probability density functions permits us to define
adaptive decision rules to segment data sets into more compact clus-
ters in an unsupervised way. Moreover, a decision rule derived from a
full polarimetric representation leads to optimal results and provides
information for class type identification by evaluating the underlying
physical scattering mechanism [17].

Kong et al. [18] introduced a maximum likelihood decision rule based
on the multivariate complex gaussian distribution of the elements of
the coherent scattering matrix. In order to limit the effects of speckle
in polarimetric SAR images, data are generally processed through in-
coherent averaging. The polarimetric information of the averaged tar-
gets is represented by coherency matrices. Lee et al. [17] introduced
the maximum likelihood decision rule to the incoherent case by using
the multivariate complex Wishart distribution of sample coherency
matrices. A k-mean algorithm was applied to iteratively assign the
pixels of the POLSAR image to one of the different classes using the
maximum likelihood rule. Lee et al. [19] further improve the classifica-
tion by using the H-α decomposition theorem [9] to provide an initial
guess of the pixel distribution into the classes that produces a better
convergence of the unsupervised classification algorithm.

In this paper, we propose an unsupervised classification of dual fre-
quency POLSAR images by including the polarimetric information of
both images. A (6 × 6) coherency matrix is constructed using the
single look complex data from the two frequency images. This ma-
trix includes the coherency matrices from each image as well as their
cross-correlation [20, 21]. This matrix is shown to follow a Wishart
distribution and a maximum likelihood decision rule is derived. Simi-
larly to the single image case, data sets are processed through a k-mean
classifier after an initialization step consisting in the application of the
H-α classification procedure to each separate image. A class number
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reduction technique is applied on the 64 resulting clusters to improve
the efficiency of the interpretation and representation of each class
characteristics. An alternative approach is also proposed based on the
introduction of the second image polarimetric information through the
cross-correlation conditional statistics. This procedure permits an ef-
ficient handling of the classification information by refining an initial
classified data set with a small number of clusters and iteratively creat-
ing new classes. The probability density of a sample cross-correlation
matrix conditionally to the polarimetric information in one image is
derived in order to calculate a distance measure. This distance is used
to perform an unsupervised splitting of a dual image cluster into 2
sub-sets. The resulting dual classes are analyzed by determining the
variation of the scattering mechanism polarimetric properties from one
data set to the other. A target vector transforms to another one by
the way of a special unitary operator. This operator is parameter-
ized in terms of 8 real coefficients obtained from a decomposition onto
the Gell-Mann basis matrix set. The determination of the variation
coefficients necessitate to resolve an over-determined set of non-linear
equations.

The classification and analysis schemes are applied to full polari-
metric P, L , and C bands SAR images of the Nezer forest acquired
by NASA /JPL AirSAR sensor (1989).

2. DUAL FREQUENCY POLARIMETRIC SAR DATA
STATISTICS

When dealing with dual frequency images, the polarimetric informa-
tion contained in a resolution cell represents the fully polarimetric char-
acteristics of both data sets.

2.1 Dual Polarimetric Representation

For a given measurement configuration, a target is fully character-
ized by its coherent target vector, k , obtained using a straightforward
lexicographic ordering of the q scattering matrix elements.

k = [SHH SHV SV H SV V ]T (1)

In the case of dual polarimetric data classification, it is important to
simultaneously take into account the polarimetric information from
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both images :

w =
[
k1

k2

]
(2)

where k1 and k2 are the target vectors belonging to the different
images. The vector w has the dimension p = 2q . The (p × p) n-
look covariance matrix A summarizes the joint information from both
images and has the following structure:

A =
1
n

n∑
j=1

wjwj
† =

[
A11 A12

A21 A22

]
, with Ars =

1
n

n∑
j=1

krjksj
†

(3)
The matrices A11 = Z1 and A22 = Z2 are the standard n-look
(q × q) covariance matrices from separate images. A12(= A21

†) is a
(q× q) complex matrix containing information about the polarimetric
cross-correlation between k1 and k2 . The target vector w follows a
complex normal distribution NC(0, Σw) [22], with Σw = E(ww†)
its (q × q) covariance matrix. The sample (p× p) covariance matrix
A has a complex Wishart distribution WC(n, ΣA) , characterized by
n degrees of freedom and by its covariance matrix ΣA = Σw/n .

p(A)=
|A|n−pexp

(
−tr

(
Σ−1

A A
)

K(n, p) |ΣA|n
with K(n, p)=πp(p−1)/2

p∏
i=1

Γ (n−i+1)

(4)
The advantage in using the (p × p) representation resides in the fact
that according to (4), dual data sets can be simultaneously classified
by using the maximum likelihood distance measure defined in (5) and
without any assumption concerning their independence. A pixel is
assigned to the class Xm if d1(Z, Xm) ≤ d1(Z, Xj) ∀j �= m , with

d1(A, Xm) = ln |ΣAm|+ tr
(
Σ−1

AmA
)

(5)

with ΣAm the (p× p) feature matrix of class Xm .

2.2 Cross-Correlation Matrix Statistics

The cross-correlation is highly sensitive to the scattering pheno-
menon type and its degree of randomness which both can be extracted
from this covariance matrix representation. The probability of A12

may then be taken into account to separate groups of pixels belonging
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to the same class but possessing slightly different dual polarimetric
information.

The properties of the hermitian matrix A permit us to define a con-
ditional probability of the polarimetric cross-correlation matrix A12 .
In order to express the conditional probability of A12 given A22, p
(A12|A22) , both A and ΣA can be partitioned as follows [23]

A =
[
A11.2 + A12A−1

22 A21 A12

A21 A22

]

ΣA =
[
ΣA11.2 +ΣA12Σ

−1
A22ΣA21 ΣA12

ΣA21 ΣA22

]
(6)

with A11.2 = A11 −A12A−1
22 A21 and ΣA11.2 = ΣA11 −ΣA12Σ

−1
A22

ΣA21 . By the way of an upper-triangular transformation, the deter-
minants of the (p × p) matrices are then simplified to the following
expressions:

|A| = |A22||A11.2| and |ΣA| = |ΣA22| |ΣA11.2| (7)

After some reductions and combinations, an expression of tr
(
Σ−1

A A
)

is found as a function of A11.2, A12 and A22 , with:

tr
(
Σ−1

A A
)

= tr
[
Σ−1

A11.2

(
A12 −ΣA12Σ

−1
A22A22

)
· A−1

22

(
A12 −ΣA12Σ

−1
A22A22

)H]
+ tr

[
Σ−1

A22A22

]
+ tr

[
Σ−1

A11.2A11.2

]
(8)

Inserting (7) and (8) into the Wishart probability function of A in
(4), it can be shown that:

p(A) = p(A11.2, A12, A22) = p(A11.2)p(A12, A22) (9)

with

p(A11.2) =
|A11.2|(n−q−q)

K(n− q, q) |ΣA11.2|(n−q)
exp

[
−tr

(
Σ−1

A11.2A11.2

)]
(10)

and
p(A12, A22)

=
|A22|(n−q)

K(n, q) |ΣA22|n
exp

[
−tr

(
Σ−1

A22A22

)]

·
exp

[
−tr

(
Σ−1

A11.2

(
A12−ΣA12Σ

−1
A22A22

)
A−1

22

(
A12−ΣA12Σ

−1
A22A22

)H)]
πq2 |ΣA11.2|q |A22|q

(11)
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From (9) and (10), it is found that the matrix A11.2 is independent
of A12 and A22 , and follows a complex Wishart probability density
function WC(n− q, ΣA11.2) .

As the sample covariance matrix of the second image, A22 , fol-
lows a complex Wishart density function with n degrees of freedom
WC(n, ΣA22) , and since p(A12,A22) = p(A12|A22)p(A22) , the con-
ditional probability density of the polarimetric cross-correlation matrix
A12 given A22 , is a complex normal function, given by the last line
of (11). This complex normal density function may be formulated as
[23]:

p(A12|A22) =NC(MA12|A22,ΣA12|A22), with

MA12|A22 =ΣA12Σ
−1
A22A22 and ΣA12|A22 = ΣT

A11.2 ⊗A22

(12)

Equation (12) can be written under a conventional form using the
properties of the Kroneker product ⊗

p(A12|A22) = p(y|A22) =
exp

[
−(y−m)†

(
ΣT

A11.2⊗A22

)−1 (y−m)
]

πq2
∣∣ΣT

A11.2

∣∣q |A22|q
(13)

with y = vec(A12
†) a q2 complex element vector obtained by stack-

ing the columns of A12
† under each other, and m = vec

(
MA12|A22

†) .
This complex normal density function gives, for pixels belonging to the
class Xm , the probability of the cross-correlation matrix conditionally
to the second image sample covariance matrix. The logarithm of (13)
is used to define a measure of the distance between the actual polari-
metric cross-correlation A12 and its expected value when observing
the second image polarimetric information A22 , with :

d2 (A12|A22, Xm) = tr
(
Σ−1

A11.2(A12 −MA12|A22)

· A−1
22 (A12 −MA12|A22)

†
)

+ qln (|A22|) (14)

3. SINGLE IMAGE CLASSIFICATION PROCEDURE

3.1 Classification Algorithm

For a reciprocal medium in a monostatic radar configuration, the
target vector presented in (1) is modified as kp = 1√

2
[SHH + SV V
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SHH − SV V 2SHV ]T leading to the definition the coherency matrix
T = E

(
kpkp

†) .
The use of the coherency matrix instead of the covariance matrix

does not modify the density distribution types and the related equa-
tions defined previously [19].

The method used to perform a classification of a single image polari-
metric data set is based on the use of an iterative k-mean algorithm
and is described in details in [17, 19].

Four options have to be chosen by the user:

• The number of classes: m .
• The initialization of the pixel distribution into the m classes.
• The distance measure from a pixel to the m class centers.
• The termination criterion.

The number of classes and the data assignment during the initial-
ization step of the classification are critical points and determine the
quality of the whole classification.

In [19], Lee et al. proposed to initialize the classes using the H-α
classification scheme [9, 10], which provides 8 classes relating to the
underlying physical scattering mechanism. This splitting of the data
set gives a stable initial approximation. The distance is estimated
using the maximum likelihood approach applied on the data statistics
mentioned above. The termination criterion may be selected from the
estimation of the classification quality, when a maximum number of
iterations is reached, or when a sufficiently low number of pixels are
switching classes from one iteration to the next.

3.2 Application to POLSAR Data

The classification technique is applied on the Nezer site situated in
the Landes Forest in the south west of France. On August 16, 1989,
full polarimetric data have been acquired by Nasa JPL AIRSAR sensor
at P, L, and C bands, with frequency at 0.44 GHz, 1.225 GHz and
5.3 GHz, respectively. The pixel spacings are 3 m by 6.6 m.

The scene contains bare soil areas and many homogeneous forested
areas of maritime pines. Several tree-age groups are included from
more than 41 years down to 5–8 years of age. Backscattering from the
tree parcels is highly correlated to the age of the trees.

Figure 2 shows the span images of the Nezer site at P band.
Figure 3 shows the results of the unsupervised Wishart classification
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Figure 1. Ground truth of Nezer Forest. This map is a courtesy of
CESBIO and Dr. Thuy Le Toan.

Figure 2. Span image at P band.
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    C1     C2       C3      C4      C5      C6      C7      C8

Figure 3. Results of the Wishart classification at P band (top) and
L band (bottom).

applied on P band and L band POLSAR data sets.
After 4 iterations, the results obtained using the unsupervised

Wishart classifier depict an important improvement in the classifi-
cation accuracy. The P band classified image shows an interesting
correspondence between the polarimetric classes and the ground truth
information. Classes 7 and 8 represent the clear cut areas whereas cells
covered with 5–8 years old trees are occupied by class 6. Medium age
trees, from 11 to 19 years old, are mainly covered by the polarimetric
classes 4, 5 and 6. Older tree cells, from 20 to more than 41 years
old, have a polarimetric behavior corresponding to classes 1, 2, 3. A
polarimetric class may spread over more than one type of forest cell
tree.

The L band classified image does not separate different tree classes
accurately. Young trees mainly correspond to class 5, while the rest
of trees are represented by classes 1, 2, 3, and 4. The unsupervised
classification at this frequency highlights differences within the clear-
cut regions which are segmented in two different classes, 7 and 8.
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This unsupervised classification algorithm modifies the decision
boundaries in an adaptive way to better fit the natural distribution
of the scattering mechanisms and takes into account the whole polari-
metric information contained in the coherency matrix representation.

The characterization and interpretation of the different clusters may
be achieved by studying the polarimetric properties of their center fea-
ture matrix from the parameters delivered by the H-A-α decomposi-
tion or other full polarimetric analysis techniques [19, 24].

4. MULTI FREQUENCY CLASSIFICATION
PROCEDURE

We propose different approaches to the classification of several polari-
metric data sets simultaneously. Dual polarimetric images are classified
by the way of clustering procedures from the distance measure defined
in (5) using the (p×p) coherency matrix representation, or successively
(5) and (14) if the dual polarimetric information is introduced through
the conditional probability density of the cross-correlation matrix.

4.1 Dual Image Maximum Likelihood Classification

4.1.1 Classification Algorithm

Both separate images are classified through the unsupervised
Wishart classifier into 8 classes each. The results are further segmented
into 64 classes by simultaneously considering the labels of pixels in
each image. This way of initializing the pixel distribution presents the
advantage to give equal significance to the polarimetric information
interpretation from each image.

The initial classified image, made of 64 clusters, is then processed
through an unsupervised k-mean clustering algorithm based on the
distance measure defined in (5). The use of the (6 × 6) dual po-
larimetric coherency matrix permits to calculate in an easy way the
distance from a pixel to the different class center feature matrices.

The dual image classification algorithm corresponding to the syn-
opsis described in figure 4 is:
Step 1: Perform the 8 class unsupervised Wishart classification on both

separate polarimetric data sets.
Step 2: Initialize the class distribution by calculating the combined

class number using the following rule: A pixel belonging to
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Figure 4. Synopsis of the dual polarimetric SAR data classification
procedure.

class X1i in the first image and to X2j in the second one is
assigned to the combined class Xi+8j . The number of classes
is then equal to 64.

Step 3: For each class Xi , compute the 6 by 6 feature covariance ma-
trix Σi = 1

Ni

∑
Ni

〈A〉 ∈ Xi .

Step 4: Assign each pixel to the class minimizing the distance measure
d1(〈A〉, Xm) from (5) over the 64 classes.

Step 5: Stop if a termination criterion is met, otherwise go to Step 3.
The accuracy, using this initialization, is highly enhanced, since pix-

els are distributed into 64 classes according to the combination of the
full polarimetric unsupervised Wishart classification results obtained
for separate images.

4.1.2 Reduction of the Number of Classes

The number of classes has to be reduced in order to facilitate the
interpretation for each class characteristics as well as the visual rep-
resentation of the geographical location of the different clusters. Lee
et al. [19] proposed a merging procedure based on the study of the
class compactness and separability that is well adapted to the natural
partition of the data. Considering the whole class set, the clusters to
be merged are the ones presenting the lowest degree of separability.
Two classes can be distinguished if they are compact and if the mean
distance between their elements is high, hence the separability between
classes Xi and Xj is defined as the ratio of their between-class dis-
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tance to their within-class dispersion [19].
For a given class Xi , the within-class dispersion Wi is defined as

the mean distance from its elements to the (6×6) class center feature
matrix Σi

Wi =
1
Ni

∑
Ni

d1 [(〈A〉 ∈ Xi) , Xi] (15)

Inserting the definition of the distance measure of (5) in (15), one may
find

Wi = ln|Σi|+ tr(I) = ln|Σi|+ z (16)

The constant term (z = 6) corresponds to the trace of the (6 × 6)
identity matrix I .

The distance between class Xi and class Xj is the mean distance
from the elements of each class to the center feature matrix of the other
class.

Bij =

1
Ni

∑
Ni

d1 [(〈A〉 ∈ Xi) , Xj ] +
1
Nj

∑
Nj

d1 [(〈A〉 ∈ Xj) , Xi]

2
(17)

Using the definition of the distance measure, the average distance be-
tween two classes is simplified to

Bij =
Wi + Wj + tr

(
Σ−1

i Σj +Σ−1
j Σi

)
2

(18)

Their separability Sp(Xi, Xj) is then given by

Sp(Xi, Xj) = Bij/(Wi + Wj) (19)

Using this definition, and considering that the classes to be merged are
these presenting the lowest separability, the class reduction technique is
applied by the way of an iterative algorithm till a termination criterion
is met.

One may use the termination introduced in [19] based on an esti-
mation of the classification quality, or consider that the reduction pro-
cedure may end when an arbitrarily fixed number of classes is reached,
so that the classification results can be efficiently handled.

4.1.3 Application to POLSAR Data

The classification algorithm is run on P, L and C , band data sets
combinations, with a number of classes reduced to 16. The classifica-
tion results of P band and L band data sets are shown in figure 5. In
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   C1     C2    C3     C4     C5     C6     C7     C8    N/A

  C9     C10   C11  C12   C13   C14   C15   C16   N/A

Figure 5. Results of the unsupervised P and L band dual data
classification.

order to facilitate the representation of a 16 classes image in grayscale,
the results are split into 2 images containing each 8 classes.

When comparing this classification method results with the ones
obtained with a single image classification procedure, one finds an im-
portant improvement in the description of the natural characteristics
distribution. The initialization step, which simultaneously takes into
account both data sets with equal importance, produces a good dis-
crimination of details like ways and small forest cells. The class number
reduction technique permits us to merge classes of close characteristics,
and produce accurate distribution of the differently aged trees in the
forest.

The classification map obtained from P and L band images , shows
a good concordance with the parcel distribution given by the ground
truth information in Figure 1. The relevant information from each data
set has been gathered to differentiate the different parcel types and to
perform a discrimination between the different types of ways between
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the parcels. Globally, the P band features permit us to discriminate
the different forest textures, while L or C bands characteristics em-
phasize the roads and ways as well as the different types of bare ground
areas. The compactness of the different classes is highly enhanced by
this dual classification procedure.

It is important to note that no assumptions were made concerning
the level of cross-correlation between the different data sets, the classi-
fication taking into account this information during the whole process.

4.2 Dual Image Classification Using the Cross-Correlation
Information

4.2.1 Classification Algorithm

The procedure described above classifies data by reducing a high
number of classes obtained by the combination of class labels in each
image. The quality of classification depends on the accuracy of the
separability criterion mentioned in (19). This top down approach can
be computationally intensive since it manipulates up to 64 classes.

A problem linked to the reduction of the number of classes may
be encountered when classifying scenes composed of various types of
scatterers. In the case of forest remote sensing, point targets or classes
corresponding to heterogeneities may be considered as highly separable
clusters, while the response of the different types of forest parcels may
appear to be very close. During the class number reduction process,
the forest parcels may then be merged into classes containing a large
number of pixels.

We propose another approach, which instead of initializing the clas-
sification with a high number of classes, begins with a small amount
of classes and iteratively uses the conditional cross-correlation infor-
mation to split one class into two sub-classes. The synopsis of this
classification scheme is presented in figure 6. The criterion used to
choose the class to be split into two sub-classes necessitates the cal-
culation of the separability measure defined in (19). In each class the
distance measure based on the cross-correlation information is calcu-
lated for each pixel from (14). The class Xm is temporarily split into
two sub-classes Xm1 and Xm2 by comparing the value of the distance
for each pixel with respect to the mean over the whole class equal to
dm = 1

Nm

∑
Nm

d2(A12|A22, Xm) for each A ∈ Xm .
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Figure 6. Synopsis of the dual polarimetric SAR data classification
procedure using the polarimetric cross-correlation matrix probability.

The decision rule is defined by

For every A ∈ Xm, if d2(A12|A22, Xm) > d

then A ∈ Xm1, else A ∈ Xm2 (20)

The class to be split Xs is the one presenting the most distant sub-
classes and verifies

Sp(Xs1, Xs2) > Sp(Xm1, Xm2) ∀s �= m (21)

where Sp(Xs1, Xs2) represents the separability between classes Xs1

and Xs2 and is defined in (19).
The classification is initialized with the result of the single image

based on the Wishart classification procedure. The number of classes
is iteratively increased till a termination criterion is met

The classification algorithm is defined as follows

Step 1: Initialize the 8 class distribution from the unsupervised Wish-
art classification on one of the separate polarimetric data sets.
The number of classes, N , is equal to 8.

Step 2: Apply the N class unsupervised dual data sets Wishart classi-
fication using the (6 × 6) polarimetric representation, till a
termination criterion is met.

Step 3: If a general termination criterion is met, go to Step 6.
Step 4: For each class, perform a temporary splitting into two sub-

classes, by applying the criterion defined in (20).
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Step 5: Effectively split the class verifying (21), N = N + 1 , go back
to Step 2.

Step 6: Stop.

Similarly to the dual image classification scheme, the general termi-
nation criterion may be obtained by evaluating the classification global
quality from the parameter defined in [19], or by fixing a maximum
number of classes. This procedure is less computationally intensive
than the former one since the number of classes remains inferior or
equal to the final one.

4.2.2 Application to POLSAR Data

The segmentation of P -L and P -C band dual data sets in 16 clus-
ters leads to almost similar results using both dual classification meth-
ods. The distribution of the classes is slightly different, but leads to
an equivalent interpretation of the forest parcels. Due to the merging
procedure, the classes produced by the first method are slightly more
compact.

We apply both classification methods to the dual P -C band data
set with a number of classes equal to 12.

The maximum likelihood classification scheme provides a segmenta-
tion of the observed scene which gathers the almost totality of the tree
covered parcels two classes, classes number 2 and 4, as can be seen in
figure 7.

During the class number reduction process, the polarimetric classes
corresponding to the various types of forest show a low separability,
compared to the point targets discriminated by C band data, and
are merged in a single class so that the remaining clusters describe
the bare soil areas. The joint use of these frequency bands with this
classification method, using a small number of classes, does not provide
good results for forest classification.

The classification based on the conditional probability of the cross-
correlation matrix is initialized with 8 clusters resulting from the
Wishart iterative classification applied on one of the separate data
sets and the class splitting procedure is run till the number of classes
reaches 12.

The classification results are shown in figure 8.
The classification provides better results than these depicted in fig-

ure 7 and provide good global information about the observed scene.
The different types of forest parcels can be distinguished and the bare
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    C1      C2      C3      C4      N/A   N/A    N/A    N/A

   C5     C6    C7     C8     C9    C10   C11   C12  N/A

Figure 7. Results of the unsupervised P and C band dual data
classification with 12 classes.

   C1     C2    C3     C4     C5     C6     C7     C8    N/A

   C9     C10     C11    C12    N/A    N/A    N/A   N/A

Figure 8. Results of the unsupervised P and C band dual data
classification using the polarimetric cross-correlation matrix probabil-
ity, with 12 classes.



Dual frequency polarimetric SAR data 265

soil areas as well as the major part of the ways are discriminated. This
method is an efficient alternative to the maximum likelihood dual clas-
sification, when the reduction procedure may merge close classes. An
important gain in computation time was observed too.

5. DUAL POLARIMETRIC CLASS DESCRIPTION

Once dual data sets are segmented according to their full polarimetric
characteristics, each resulting class may be analyzed by determining
the average change in polarimetric properties from one image to the
other. Variations of the mean backscattering phenomenon properties
may be characterized by the following indicators :

• The total polarimetric power given by the span = λ1 +λ2 +λ3 [10]
• The normalized eigenvalue spectrum defined by the entropy and the

anisotropy [10].
• The average normalized backscattering mechanism described by α,

β, δ , and γ [10].

The variation of the total power of the eigenvalue spectrum may be
described by differences or ratios, while the change of backscattering
mechanism necessitates the use of special unitary operators.

5.1 Special Unitary Transformation

Any pure target coherency matrix may be decomposed as follows

T = λ(VΣ0V†) = λuu† with Σ0 = diag[1 0 0] (22)

where V and Σ0 respectively stand for the eigenvector and normal-
ized eigenvalue matrix of T . u is the unitary eigenvector related to
the single non-zero eigenvalue λ and represents the normalized target
vector. The constant structure of the normalized eigenvalue matrix
involves that coherency matrices measured at different frequencies T1

and T2 present normalised target vectors, u1 and u2 , which are
linked by the way of a special unitary transformation as shown in (23).

V2Σ0V
†
2 = U3(V1Σ0V1

†)U†3 ⇒ u2 = U3u1 (23)

where U3 is a (3 × 3) complex special unitary operator verifying
U−1

3 = U3
† and |U3| = +1 . This operator completely defines the

change of scattering basis from T1 to T2 and then summarizes the
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Figure 9. The eight Gell-Mann SU3 generators Gi and their corre-
sponding operators Λi .

modification in the scattering mechanism as the observation frequency
varies.

As an element of the special unitary matrix group SU3, U3 may
be expressed in terms of a matrix complex exponential of a linear
combination of eight generators which form a basis matrix set [25, 26].

U3 = exp

(
j

8∑
i=1

wiGi

)
(24)

where wi represent a real scalar angular variable and Gi the corre-
sponding generator. The Gell-Mann matrix set is commonly used as
a basis for SU3. It had applications in particles physics theory [26]
and was introduced in the important case of backscatter of polarized
electromagnetic waves in [27].

In Fig. 9 are given the eight traceless hermitian Gell-Mann gener-
ators Gi and their corresponding SU3 operators Λi = exp(jwiGi) =
U3(wi) .

The operators Λ2, Λ5 and Λ7 correspond to rotations around the
different components of the unitary target vector, while Λ1, Λ4 and
Λ6 represent the corresponding elliptic transformations. Λ3 and Λ8

modify the phase difference between the components of u . Three of
these operators, Λ1, Λ4 and Λ7 , have equivalent representations in
the (2 × 2) SU2 group of the special unitary operators dedicated to
the transformation of the scattering matrix S . The scalar variables
w1, w4, w7 are proportional to respectively υ the bouncing angle,
τ the symmetry angle, and φ , the orientation angle as defined by
Huynen in the phenomenological analysis of the target polarization
fork [8]. The characterization of the polarimetric transformation of a
normalized target vector consists in determining the complete set of 8



Dual frequency polarimetric SAR data 267

u1(n-1) u1(n) u1(n+1)

u2(n-1) u2(n) u2(n+1)

U3(wn-1) U3(wn) U3(wn+1)

Data set 1

Data set 2

Figure 10. Special unitary transformations between successive dual
frequency samples.

real Gell-Mann parameters, w = [w1, · · · , w8] , which exactly defines a
special unitary operator.

The resolution of the non-linear relation given by u2 = U3(w)u1 ,
leads to an under-determined system of five observables with eight
variables and has an infinite number of solutions [28]. A performing
method to extract the Gell-Mann parameter vector w consists in as-
suming that the polarimetric variation from one data set to the other
remains constant U3(wn+1) ≈ U3(wn) over two sample periods as
shown in Fig. 10.

This assumption permits to obtain an over-determined system of
equations whose resolution is performed by the way of a least-square
non-linear optimization technique aiming to determine w which min-
imizes the real scalar ε2 as shown in (25).

ε2(w) = K†K with K =
[

u2(n) −U3(w)u1(n)

u2(n+1) −U3(w)u1(n+1)

]
(25)

5.2 Application to POLSAR Data

The method used to minimize the least square error is based on
the Levenberg-Marquardt algorithm which gathers the advantages of
both the conjugate gradient and Newton algorithms. It requires the
calculation of the derivative of the error with respect to each of the
Gell-Mann parameters.

We applied the error minimization algorithm to the classified dual
data set obtained with P and L band data. Each dual cluster is then
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Figure 11. Gell-Mann parameters (degrees), w2 (solid line), w5

(dashed dot line), w8 (dashed star line) over the 16 classes obtained
with P and L band data sets.

represented by a set of eight average Gell-Mann parameters. In Fig. 11
are represented the values of three of these parameters for the sixteen
classes.

The sixteen dual classes are characterized by vectors of mean Gell-
Mann parameters which correspond to transformations of the mean
scattering mechanism from one image to the other.

It is interesting to note that each cluster has a different mean Gell-
Mann parameters set. This particularity will be used in future studies
to develop an interpretation of the change in polarimetric properties
occurring within each dual class.

6. CONCLUSION

In this paper, we introduced a new classification scheme for dual fre-
quency polarimetric SAR data sets using a (6 × 6) polarimetric co-
herency matrix to simultaneously take into account the full polarimet-
ric information from both images. Two classification methods were
proposed. The first one was based on an iterative algorithm using a
maximum likelihood decision rule evaluated from the Wishart density
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function of the (6 × 6) matrix. The initialization of this classifica-
tion is realized with a combination of the H-α classification results
from each image providing 64 initial classes. Once the iterative algo-
rithm has converged, a class number reduction technique is applied
to improve the representation of each class characteristics. The re-
sults obtained with this classification show an important improvement
in the description of the different types of natural media encountered
in a forest scene. Parcels containing different types of trees can be
distinguished and small classes such as roads and small forest parcels
are discriminated. The class number reduction technique enhances the
class compactness and improves the interpretation possibilities.

This reduction procedure may, in case of point targets, lead to the
merging of large areas into small number of polarimetric classes. In
order to overcome this problem, a second technique is proposed which
introduces the polarimetric cross-correlation information and refines
the results by iteratively creating new classes during the classification.

Once dual data sets are classified, the analysis of the resulting clus-
ters is realized by determining the rigorous change in polarimetric prop-
erties from one image to the other. The polarimetric variations are
parameterized by eight real coefficients derived from the decomposi-
tion of a special unitary operator on the Gell-Mann basis. Each dual
class is thus characterized by a set of eight average real Gell-Mann
coefficients.
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