
Progress In Electromagnetics Research, PIER 33, 119–139, 2001

DYNAMICS OF GAUSSIAN AND SUPER-GAUSSIAN
SOLITONS IN BIREFRINGENT OPTICAL FIBERS

A. Biswas

Department of Physics and Mathematics
Tennessee State University
Nashville, TN 37209, USA

Abstract—The variational principle is employed to obtain the
parameters dynamics of Gaussian and super-Gaussian chirped solitons
which propagates through birefringent optical fibers that is governed by
the dispersion-managed vector nonlinear Schrödinger’s equation. The
waveform deviates from that of a classical soliton. The periodically
changing strong chirp of such a soliton reduces the effective nonlinearity
that is necessary for balancing the local dispersion. This study is
extended to obtain the adiabatic evolution of the parameters of such
a soliton in presence of perturbation terms.

1 Introduction

2 Lagrangian Formulation
2.1 Gaussian Solitons
2.2 Super-Gaussian Solitons

3 Perturbation Terms
3.1 Gaussian Solitons
3.2 Super-Gaussian Solitons

4 Conclusions

References

1. INTRODUCTION

The dynamics of solitons propagating in optical fibers has been a
major area of research given its potential applicability in all optical
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communication systems. The relevant equation is the nonlinear
Schrodinger’s equation with damping and periodic amplification [1]:

iqz +
D(z)

2
qtt + |q|2q = −iΓq + i

[
eΓza − 1

] N∑
n=1

δ(z − nza)q (1)

Here, Γ is the normalized loss coefficient, za is the normalized
characteristic amplifier spacing and z and t represent the normalized
propagation distance and the normalized time, respectively, expressed
in the usual nondimensional units.

Also, D(z) is used to model strong dispersion management. We
decompose the fiber dispersion D(z) into two components namely a
path-averaged constant value δa and a term representing the large rapid
variation due to large local values of the dispersion [2]. Thus, we write:

D(z) = δa +
1
za

∆(ζ) (2)

where ζ = z
za

. The function ∆(ζ) is taken to have average zero
(namely 〈∆〉 = 0), so that the path-averaged dispersion 〈D〉 = δa.
The proportionality factor in front of ∆(ζ) is chosen so that both δa
and ∆(ζ) are quantities of order one. In practical situations, dispersion
management is often performed by concatenating together two or more
sections of given length with different values of fiber dispersion. In the
special case of a two-step map it is convenient to write the dispersion
map as a periodic extension of [2]

∆(ζ) =




∆1 : 0 ≤ |ζ| < θ

2

∆2 :
θ

2
≤ |ζ| < 1

2

(3)

where ∆1 and ∆2 are given by

∆1 =
2s
θ

and ∆2 =
2s

1− θ
with the map strength s defined as

s =
θ∆1 − (1− θ)∆2

4
(4)

Conversely, we have

s =
∆1∆2

4(∆2 −∆1)
and θ =

∆2

∆2 −∆1
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Figure 1. Schematic diagram of a two-step map.

A typical dispersion map is shown in Figure 1.
We take into account the loss and amplification cycles by looking

for a solution of (1) of the form q(z, t) = A(z)u(z, t) for real A. Taking
A to satisfy

Az + ΓA−
[
eΓza − 1

] N∑
n=1

δ(z − nza)A = 0 (5)

we can show that (1) transforms to

iuz +
D(z)

2
utt + g(z)|u|2u = 0 (6)

where we have
g(z) = A2(z) = a2

0e
−2Γ(z−nza) (7)

for z ∈ [nza, (n+ 1)za) and n > 0 and also

a0 =
[

2Γza
1− e−2Γza

] 1
2

(8)

so that 〈g(z)〉 = 1 over each amplification period [1]. Equation
(6) governs the propagation of a dispersion managed soliton through
a polarization preserved optical fiber with damping and periodic
amplification.

A single mode fiber supports two degenerate modes that are
polarized in two orthogonal directions. Under ideal conditions of
perfect cylindrical geometry and isotropic material, a mode excited
with its polarization in one direction would not couple with the mode
in the orthogonal direction. However, small deviations from the
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cylindrical geometry or small fluctuations in material anisotropy result
in a mixing of the two polarization states and the mode degeneracy is
broken. Thus the mode propagation constant becomes slightly different
for the modes polarized in orthogonal directions. This properly is
referred to as modal birefringence [11]. Birefringence can also be
introduced artificially in optical fibers.

The propagation of solitons in birefringent nonlinear fibers has
attracted much attention in recent years. It has potential applications
in optical communications and optical logic devices. The equations
that describe the pulse propagation through these fibers was originally
derived by Menyuk [11]. They can be solved approximately in certain
special cases only. The localized pulse evolution in a birefringent fiber
has been studied analytically, numerically and experimentally [17] on
the basis of a simplified chirp-free model without oscillating terms
under the assumptions that the two polarizations exhibit different
group velocities. In this paper we shall study the equations that
describe the pulse propagation in birefringent fibers of the following
dimensionless form:

i(uz + δut) + βu+
D(z)

2
utt + g(z)

(
|u|2 + α|v|2

)
u+ γv2u∗ = 0 (9)

i(vz − δvt) + βv +
D(z)

2
vtt + g(z)

(
|v|2 + α|u|2

)
v + γu2v∗ = 0 (10)

Equations (9) and (10) are known as the Dispersion Managed Vector
Nonlinear Schrodinger’s Equation (DM-VNLSE). Here, u and v are
slowly varying envelopes of the two linearly polarized components
of the field along the x and y axis. Also, δ is the group velocity
mismatch between the two polarization components and is called the
birefringence parameter, β corresponds to the difference between the
propagation constants, α is the cross-phase modulation coefficient and
γ is the coefficient of the coherent energy coupling (four-wave mixing)
term. These equations are, in general, not integrable. However, they
can be solved analytically for certain specific cases [11, 17]. The first
two integrals of motion of (9) and (10) are the energy and the

momentum of the pulse that are respectively given by [23]:

W =
∫ ∞
−∞

(
|u|2 + |v|2

)
dt (11)

M =
i

2
D(z)

∫ ∞
−∞

(u∗ut − uu∗t + v∗vt − vv∗t )dt (12)
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The Hamiltonian which is given by

H =
1
2

∫ ∞
−∞

[
D(z)

2

(
|ut|2 + |vt|2

)
− β

(
|u|2 − |v|2

)

−g(z)
2

(
|u|4 + |v|4

)
− iδ

2
(u∗ut − uu∗t + v∗vt − vv∗t )

−α|u|2|v|2 −1
2
(1− α)

(
u2v∗2 + v2u∗2

)]
dt (13)

is however not a constant of motion, in general. The existence of
a Hamiltonian implies that we can also write (9) and (10) in the
Hamiltonian form as:

iuz =
δH

δu∗
and ivz =

δH

δv∗

This defines a Hamiltonian dynamical system on an infinite-
dimensional phase space of two complex functions u and v that decrease
to zero at infinity and can be analysed using the theory of Hamiltonian
system.

2. LAGRANGIAN FORMULATION

Since, there is no inverse scattering solution to (9) and (10) we
shall study these equations approximately by means of variational
method based on the observation that it supports well-defined chirped
soliton solution whose shape is that of a Gaussian [12] or a super-
Gaussian (SG) [6]. For a finite dimensional problem of a single particle,
the temporal development of its position is given by the Hamilton’s
principle of least action [11]. It states that the action given by the
time integral of the Lagrangian is an extremum, namely

δ

∫ t2

t1
L(x, ẋ)dt = 0 (14)

where x is the position of the particle and ẋ = dx
dt . The variational

problem (14) then leads to the familiar Euler-Lagrange’s (EL) equation
[11]:

∂L

∂x
− d

dt

(
∂L

∂ẋ

)
= 0 (15)
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Here, in (9) and (10), the Lagrangian density is given by:

L[u, u∗, uz, u∗z, ut, u
∗
t ; z]

=
i

2
(u∗uz − uu∗z) +

i

2
(v∗vz − vv∗z) +

iδ

2
(v∗ut − uv∗t ) +

iδ

2
(u∗vt − vu∗t )

−D(z)
2

(
|ut|2 + |vt|2

)
+
g(z)
2

(
|u|4 + |v|4

)
+ αg(z)|u|2|v|2

+β(u∗v − uv∗) +
γ

2

(
u2v∗2 + v2u∗2

)
(16)

In this analysis we shall neglect the terms with δ as we have δ ≤ 10−3

[17]. Also, neglecting β and the four wave mixing terms given by the
γ term, we arrive at

iuz +
D(z)

2
utt + g(z)

(
|u|2 + α|v|2

)
u = 0 (17)

ivz +
D(z)

2
vtt + g(z)

(
|v|2 + α|u|2

)
v = 0 (18)

whose Lagrangian density is

L[u, u∗, uz, u∗z, ut, u
∗
t ; z]

=
i

2
(u∗uz − uu∗z) +

i

2
(v∗vz − vv∗z)−

D(z)
2

(
|ut|2 + |vt|2

)

+
g(z)
2

(
|u|4 + |v|4

)
+ αg(z)|u|2|v|2 (19)

Now, we assume that the solutions of (17) and (18) is given by a chirped
pulses of the form [12]:

u(z, t) = A1(z)f [B1(z){t− t1(z)}]
exp

[
iC1(z){t− t1(z)}2 − iκ1(z){t− t1(z)}+ iθ1(z)

]
(20)

and

v(z, t) = A2(z)f [B2(z){t− t2(z)}]
exp

[
iC2(z){t− t2(z)}2 − iκ2(z){t− t2(z)}+ iθ2(z)

]
(21)

where f represents the shape of the pulse. Also, here the parameters
Aj(z), Bj(z), Cj(z), κj(z), tj(z) and θj(z) (for j = 1, 2) respectively
represent the soliton amplitude, the inverse width of the soliton, chirp,
frequency, the center of the soliton and the center of the phase of
the solitons respectively. Using the variational principle we shall
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derive a set of evolution equations for the soliton parameters. We
note that, this approach is only approximate and does not account
for characteristics such as energy loss due to continuum radiation,
damping of the amplitude oscillations and changing of the pulse shape
[4, 7]. Now, integrating L, given by (19), with respect to t and using
the ansatz (20) and (21) we arrive at the following Lagrangian:

L =
∫ ∞
−∞
Ldt

= −DA2
1

(
B1

2
I3 + 2

C2
1

B3
1

I2 +
κ2

1

2B1
I1

)

+
gA4

1

2B1
I4 −

A2
1

B3
1

I2
dC1

dz
+
A2

1

B1
I1

(
t1
dκ1

dz
− dθ1
dz

)

−DA2
2

(
B2

2
I3 + 2

C2
2

B3
2

I2 +
κ2

2

2B2
I1

)

+
gA4

2

2B2
I4 −

A2
2

B3
2

I2
dC2

dz
+
A2

2

B2
I1

(
t2
dκ2

dz
− dθ2
dz

)
(22)

where we have

I1 =
∫ ∞
−∞

f2(τ)dτ

I2 =
∫ ∞
−∞

τ2f2(τ)dτ

I3 =
∫ ∞
−∞

(
df

dτ

)
dτ

I4 =
∫ ∞
−∞

f4(τ)dτ

and

I5 =
∫ ∞
−∞

f2[B1(z)(t− t1(z))]f2[B2(z)(t− t2(z))] dt

By the principle of least action, we have the EL equation as

∂L

∂p
− d

dz

(
∂L

∂pz

)
= 0 (23)

where p is one of the twelve soliton parameters. Substituting
Aj , Bj , Cj , κj , tj and θj (j = 1, 2) for p in (23) we arrive at the
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following set of equations:

dA1

dz
= −DA1C1 (24)

dB1

dz
= −2DB1C1 (25)

dC1

dz
= D

(
B4

1

2
I3
I2
− 2C2

1

)
− gA

2
1B

2
1

4
I4
I2
− αg

2
A2

2B
3
1

I5
I2

(26)

dκ1

dz
= 0 (27)

dt1
dz

= −Dκ1 (28)

dθ1
dz

= D

(
κ2

1

2
− I3
I1
B2

1

)
+

5gA2
1

4
I4
I1

+
3
2
αgA2

2B1
I5
I1

(29)

dA2

dz
= −DA2C2 (30)

dB2

dz
= −2DB2C2 (31)

dC2

dz
= D

(
B4

2

2
I3
I2
− 2C2

2

)
− gA

2
2B

2
2

4
I4
I2
− αg

2
A2

1B
3
2

I5
I2

(32)

dκ2

dz
= 0 (33)

dt2
dz

= −Dκ2 (34)

dθ2
dz

= D

(
κ2

2

2
− I3
I1
B2

2

)
+

5gA2
2

4
I4
I1

+
3
2
αgA2

1B2
I5
I1

(35)

Now, from (24) and (25) we conclude that A1 = K1

√
B1 for some

constant K1 and similarly from (30) and (31) we have A2 = K2

√
B2

for some constant K2. So, the number of parameters reduces by two.
Thus, (24) through (35), respectively, modify to

dB1

dz
= −2DB1C1 (36)

dC1

dz
= D

(
B4

1

2
I3
I2
− 2C2

1

)
− K

2
1gB

3
1

4
I4
I2
− αg

2
K2

2B
3
1B2

I5
I2

(37)

dκ1

dz
= 0 (38)
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dt1
dz

= −Dκ1 (39)

dθ1
dz

= D

(
κ2

1

2
− I3
I1
B2

1

)
+

5gK2
1B1

4
I4
I1

+
3
2
αgK2

2B1B2
I5
I1

(40)

dB2

dz
= −2DB2C2 (41)

dC2

dz
= D

(
B4

2

2
I3
I2
− 2C2

2

)
− K

2
2gB

3
2

4
I4
I2
− αg

2
K2

1B
3
2B1

I5
I2

(42)

dκ2

dz
= 0 (43)

dt2
dz

= −Dκ2 (44)

dθ2
dz

= D

(
κ2

2

2
− I3
I1
B2

2

)
+

5gK2
2B2

4
I4
I1

+
3
2
αgK2

1B1B2
I5
I1

(45)

2.1. Gaussian Solitons

For a Gaussian pulse we choose the form f(τ) = e−τ
2

so that we have
the integrals respectively

I1 =
√
π

2

I2 =
1
4

√
π

2

I3 =
√
π

2

I4 =
√
π

2
and

I5 =
√

π

B2
1 +B2

2

e
− B2

1B
2
2

B2
1
+B2

2

(t1−t2)2

Thus, we have our evolution equations (36)–(45) respectively reduce
to
dB1

dz
= −2DB1C1 (46)

dC1

dz
= −2αgK2

2B
3
1B2

√
2

B2
1 +B2

2

e
− B2

1B
2
2

B2
1
+B2

2

(t1−t2)2
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−
√

2
2
gK2

1B
3
1 + 2D

(
B4

1 − C2
1

)
(47)

dκ1

dz
= 0 (48)

dt1
dz

= −Dκ1 (49)

dθ1
dz

=
5

4
√

2
gK2

1B1 +
3
2
αgK2

2B1B2

√
2

B2
1 +B2

2

e
− B2

1B
2
2

B2
1
+B2

2

(t1−t2)2

+
D

2

(
κ2

1 − 2B2
1

)
(50)

dB2

dz
= −2DB2C2 (51)

dC2

dz
= −2αgK2

1B
3
2B1

√
2

B2
1 +B2

2

e
− B2

1B
2
2

B2
1
+B2

2

(t1−t2)2

−
√

2
2
gK2

2B
3
2 + 2D

(
B4

2 − C2
2

)
(52)

dκ2

dz
= 0 (53)

dt2
dz

= −Dκ2 (54)

dθ2
dz

=
5

4
√

2
gK2

2B2 +
3
2
αgK2

1B1B2

√
2

B2
1 +B2

2

e
− B2

1B
2
2

B2
1
+B2

2

(t1−t2)2

+
D

2

(
κ2

2 − 2B2
2

)
(55)

2.2. Super-Gaussian Solitons

For a SG soliton we generalize the Gaussian pulses to f(τ) = e−τ
2m

for
m ≥ 1 where the parameter m controls the degree of edge sharpness.
Withm = 1, we recover the case of a chirped Gaussian soliton while for
larger values of m the soliton gradually becomes square shaped with
sharper leading and trailing edges [3]. In Fig. 2 below, one can see the
shapes of the pulses as the parameter m varies.

With this SG pulse we have

I1 =
1

m2
1

2m

Γ
(

1
2m

)

I2 =
1

m2
3

2m

Γ
(

3
2m

)
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Figure 2. SG Pulse with the variation of the parameter m.

I3 = m2
1

2mΓ
(

4m− 1
2m

)

I4 =
1

m2
1
m

Γ
(

1
2m

)

and

I5 =
∫ ∞
−∞

e−2{B2m
1 (t−t1)2m+B2m

2 (t−t2)2m}dt

where Γ(x) is the Gamma function. Here, we note that I5 cannot
be evaluated in a closed form for any m. It can be evaluated for a
particular value of m that controls the degree of edge sharpness. Thus,
we have our evolution equations (36)–(45) respectively reduce to

dB1

dz
= −2DB1C1 (56)

dC1

dz
= D



m2

2
m−2
m

Γ
(

4m− 1
2m

)

Γ
(

3
2m

) B4 − 2C2


− gK

2
1B

3
1

1

2
4m+1
2m

Γ
(

1
2m

)

Γ
(

3
2m

)

− m

2
2m−3
m

αgK2
2B

3
1B2

I5

Γ
(

3
2m

) (57)



130 Biswas

dκ1

dz
= 0 (58)

dt1
dz

= −Dκ1 (59)

dθ1
dz

= D



κ2

2
−m22

1
m

Γ
(

4m− 1
2m

)

Γ
(

1
2m

) B2
1


 +

5

2
4m+1
2m

gK1B1

+
3m

2
2m−1
2m

αgK2
2B1B2

I5

Γ
(

1
2m

) (60)

dB2

dz
= −2DB2C2 (61)

dC2

dz
= D



m2

2
m−2
m

Γ
(

4m− 1
2m

)

Γ
(

3
2m

) B4 − 2C2


− gK

2
2B

3
2

1

2
4m+1
2m

Γ
(

1
2m

)

Γ
(

3
2m

)

− m

2
2m−3
m

αgK2
1B

3
2B1

I5

Γ
(

3
2m

) (62)

dκ2

dz
= 0 (63)

dt2
dz

= −Dκ2 (64)

dθ2
dz

= D



κ2

2
−m22

1
m

Γ
(

4m− 1
2m

)

Γ
(

1
2m

) B2
2


 +

5

2
4m+1
2m

gK2B2

+
3m

2
2m−1
2m

αgK2
1B1B2

I5

Γ
(

1
2m

) (65)

We note that (56)–(65) respectively reduce to (46)–(55) for the case
m = 1, namely the case of Gaussian solitons.

3. PERTURBATION TERMS

We, now, consider the perturbed DM-VNLSE that is given by

iuz +
D(z)

2
utt + g(z)

(
|u|2 + α|v|2

)
u = iεR1[u, u∗; v, v∗] (66)
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ivz +
D(z)

2
vtt + g(z)

(
|v|2 + α|u|2

)
v = iεR2[u, u∗; v, v∗] (67)

Here, R1 and R2 represent the perturbation terms and the perturbation
parameter ε, called the relative width of the spectrum, arises due
to quasi-monochromaticity [3, 11]. Also, we have 0 < ε � 1.
The perturbation terms could, very well, represent the third order
dispersion, the Raman scattering, nonlinear damping and saturable
amplifiers just to name a few. In presence of the perturbation terms
we have the EL equation modify to [6]:

∂L

∂p
− d

dz

(
∂L

∂pz

)
= iε

∫ ∞
−∞

(
R1
∂u∗

∂p
−R∗1

∂u

∂p

)
dt (68)

and
∂L

∂p
− d

dz

(
∂L

∂pz

)
= iε

∫ ∞
−∞

(
R2
∂v∗

∂p
−R∗2

∂v

∂p

)
dt (69)

where p represents the soliton parameters. Once again, substituting
Aj , Bj , Cj , κj , tj and θj where j = 1, 2 for p in (68) and (69) we
arrive at the following adiabatic evolution equations:

dA1

dz
= −DA1C1 −

ε

2I1I2

∫ ∞
−∞

[R2e

−iφ2 ]
(
I1τ

2
1 − 3I2

)
f(τ1)dτ1 (70)

dB1

dz
= −2DB1C1−

εB1

A1I1I2

∫ ∞
−∞

[R2e

−iφ1 ]
(
I1τ

2
1 − I2

)
f(τ1)dτ1 (71)

dC1

dz
= D

(
B4

1

2
I3
I2
− 2C2

1

)
− gA

2
1B

2
1

4
I4
I2
− αg

2
A2

2B
3
1

I5
I2

− εB2
1

2A1I2

∫ ∞
−∞
�[R2e

−iφ2 ]
(
f(τ1) + 2τ1

df

dτ1

)
dτ1 (72)

dκ1

dz
=

2ε
A1B1I1

∫ ∞
−∞

{
B2

1�[Re−iφ1 ]
df

dτ1
−2C1
[R2e

−iφ1 ]τ1f(τ1)
}
dτ1 (73)

dt1
dz

= −Dκ1 +
2ε

A1B1I1

∫ ∞
−∞

[R2e

−iφ1 ]τ2f(τ1)dτ1 (74)

dθ1
dz

= D

(
κ2

1
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dt2
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where we have used the notations

τj = Bj(z)(t− tj(z))
and

φj = Cj(z){t− tj(z)}2 − κj(z){t− tj(z)}+ θj(z)

for j = 1, 2. Also, 
 and � represent the real and imaginary parts
respectively. We note that (24)–(35) are special cases of (70)–(81)
respectively for ε = 0. We shall now simplify the dynamics for the
Gaussian and SG solitons.

3.1. Gaussian Solitons

Here, we again use f(τj) = e−τ
2
j where j = 1, 2. Also using the integrals

Ij for 1 ≤ j ≤ 5 from Section 2.1 we get the parameter dynamics of
the solitons as
dA1

dz
= −DA1C1 −

ε√
2π

∫ ∞
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(
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)
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3.2. Super-Gaussian Solitons

For the SG solitons we use the integrals Il for l = 1, 2, 3, 4, 5 from
Section 2.2 and the from of the SG soliton for f(τj) to finally give:
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Here, we once again, note that (99)–(105) respectively reduce to (80)–
(93) for the special case m = 1. Thus the parameter dynamics of
chirped Gaussian and SG solitons can be very useful to study the
vector solitons in a birefringent media. In particular, the equations
derived in presence of the perturbation terms can be useful in various
physical applications like studying the coherent energy coupling in
solitons. Also it can be used to study the background radiation as well
as the timing and amplitude jitter in a wavelength-division multiplexed
soliton system due to perturbation of particular type.

4. CONCLUSIONS

In this paper we have derived the parameter dynamics of a chirped
Gaussian and super-Gaussian soliton in a birefringent fiber. The
fundamental dynamics of a dispersion managed soliton is governed
by the pulse width and frequency chirp. Also, we had studied
the adiabatic evolution of the soliton parameters in presence of
perturbation terms of the vector DMNLSE.

These equations gives us useful estimates of the effect of
perturbation terms on the soliton transmission lines. In the applied
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soliton community it can be used to study the nonlinear interactions
with other solitons. It can also be used to study the stochastic
perturbation of optical solitons, the dispersive radiation terms just to
name a few. Although, we have not included the study of radiations in
birefringent optical fibers, the application of the variational principle
to study radiation is awaited.
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