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Abstract—This paper shows the scattering cross sections of a random
medium which is a simple model of moist soil by analyzing a dense
medium radiative transfer equation (DMRT). The parameters in the
DMRT, the extinction rate and the scattering coefficient, are calculated
by a multiple scattering method called our method in this paper. Our
method is valid for particles with high dielectric constant like water
drops. Characteristics of the scattering cross section are made clear
by changing the fractional volume of water and the incident angle,
polarization of incident waves. We discuss the possibility of detection
of a water content in this approach by using the characteristics of the
scattering cross section.
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1. INTRODUCTION

Remote sensing for earth terrain such as snow, ice and soil has attracted
attention for widely measuring earth environment. The detection
of a water content of soil is one of important problems in civil and
agricultural engineering, and has therefore been studied in active and
passive remote sensing approaches [1, 2]. Microwave remote sensing
seems to be a promising one because the properties of moist soil for
microwave are sensitive to a water content [3].

Moist soil is composed of air, soil particles, bound water and free
water [3, 4] and may be regarded as a dense random medium from
a theoretical point of view. Theoretical approaches have not been
made a lot of progress in the remote sensing because the particles of
high dielectric constant such as water drops make it difficult to take
account multiple scattering effects into the analysis of interaction of
waves with random media. One of the authors presented recently a
multiple scattering method which is applicable to particles of high
dielectric constant [5, 6]. By using the method, we now investigate
the characteristics of scattered power by a random medium when the
distribution of particles containing water changes from sparsely to
densely.

Radiative transfer equations have been used to analyze the
transport of wave intensity in a random medium. A conventional
radiative transfer equation (CRT) based on the transport of energy
through the medium becomes invalid for a dense random medium
such a moist soil. Another radiative transfer equation called dense
medium radiative transfer equation (DMRT) has been derived from a
wave equation by applying the Quasi Crystalline Approximation with
Coherent Potential (QCA-CP) and the ladder approximation to the
first and second moments of waves [7]. Under these approximations,
the random medium can be regarded as a homogeneous medium with
the effective dielectric constant evaluated by QCA-CP in Rayleigh
scattering region; and the effective dielectric constant is closely related
to the scattering coefficient and the extinction rate in the DMRT. It
has been, however, shown that QCA-CP becomes invalid for a random
medium with particles of high dielectric constant [5, 6].
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Another method for evaluating the effective dielectric constant
has been presented by one of the authors [8, 9], which is called
“our method” in this paper. It has been shown that our method
is physically valid even for particles of high dielectric constant like
water drops, where other methods including QCA-CP become invalid
[5, 6]. Numerical comparison of scattered power between four methods
including QCA-CP and our method [10] has shown that it is highly
important to evaluate the effective dielectric constant precisely for
calculating the scattering cross section of a random medium by using
a radiative transfer equation.

For developing a method for detecting a water content of soil
by active remote sensing, this paper deals with a three layer model
composed of air, moist soil layer and bottom layer. The moist soil
layer is assumed to be a random medium where identical spherical
particles are embedded in a homogeneous background medium. We
consider two types of the particles: water drops and soil particles
coated with water. A radiative transfer equation with the parameters
evaluated by our method are used in the random medium to calculate
the scattering cross section of the moist soil layer. The calculation
makes numerically clear the characteristics of scattering cross section
of the layer by changing the fractional volume of water and the incident
angle, polarization of incident waves. From the numerical results, we
discuss the possibility of detection of the water content in this approach
by considering the effects of layer thickness and bottom layer. It should
be noted that we do not need to take backscattering enhancement into
account because the scattering effect of water drops is small as will be
mentioned in Subsection 2.2.

2. FORMULATION

Let us consider a layer of random medium of εgε0 and thickness d
(region 1) where identical spheres of radial dielectric constant profile
ε1(r)ε0 and radius a are embedded. The layer is over a semi-infinite
layer of ε2ε0 (region 2) and under air ε0 (region 0), as shown in
Fig. 1. A polarized electromagnetic plane-wave is incident on region 1
from region 0 in the direction of (π − θ0i, φ0i). The specific intensity
of the wave is assumed to satisfy a DMRT in region 1 and the
boundary conditions at both boundaries between regions 0 and 1 and
regions 1 and 2. The intensity in region 2 is easily estimated from
that at the boundary because the region is a homogeneous medium.
The extinction rate and the scattering coefficient in the DMRT are
evaluated from the effective medium parameters in region 1 by using
our method.
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Figure 1. Geometry of the problem of wave scattering from a layer
of discrete random medium.

2.1. Dense Medium Radiative Transfer Equation

The second moment of waves in a random medium generally obeys the
Bethe-Salpeter equation. By applying the ladder approximation, the
Bethe-Salpeter equation can be reduced to a DMRT. The DMRT in
region 1 is written as, for 0 ≤ θ ≤ π,

cos θ
∂I(θ, φ, z)

∂z
= −κeI(θ, φ, z) +

κs

4π

∫ π

0
dθ′

· sin θ′
∫ 2π

0
dφ′P(θ, φ; θ′, φ′) · I(θ′, φ′, z), (1)

where I(θ, φ, z) is a 4 × 1 vector called the Stokes vector at z, given
by

I(θ, φ, z) =



Iv
Ih
U
V


 (2)

and P(θ, φ; θ′, φ′) is a 4 × 4 matrix, called phase matrix which describes
the relation between the incident Stokes vector in the direction (θ′, φ′)
and the scattered one in the direction (θ, φ), and is assumed the
Rayleigh phase matrix [12] in this paper. Here κe and κs are the
extinction rate and the scattering coefficient, respectively, and are
closely related to the effective dielectric constant of a random medium
εeffε0; in other words, they depend on multiple scattering methods for
estimating the εeff .
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On the other hand, the effective propagation constant K(= K ′ +
jK ′′) in the random medium can be expressed as

K2 = k2εeff = k2
g + n0c (3)

where k and kg, respectively, are the wave number in free space and
of the background medium, and n0 denotes the distribution density of
spheres. The n0c shows the multiple scattering effects and is estimated
by our method in this paper.

Let the mean distance between spherical particles be b, the
fractional volume of particles be f and the relative contrast of each
particle be εd(r)=[ε1(r) − εg]/εg. According to our method [6, 8, 9],
two forward scattering amplitudes F1 and F2 are introduced: they
are, respectively, determined from the scattering of one particle with
relative dielectric constant [k2

gεd(r) + k2
e ]/k

2 and [k2
gεe(r) + k2

e ]/k
2 in

the medium of ke for plane wave incidence. Here ke and εe(r) are
expressed as the following equations [5]:

k2
e = k2

g

[
1 +

4π
b3

∫ a

0
εd(r1)r21dr1

]
(4)

εe(r) =
√

2
π

1
rσ

exp

[
− r

2

2σ2

]∫ a

0
εd(r1) exp

[
− r

2
1

2σ2

]
sinh

[
rr1
σ2

]
r1dr1 (5)

where σ2 denotes the variance of random replacement of spherical
particles from a uniformly ordered distribution. In this paper, we
assume σ/b = 1− f for simplicity [6].

Consequently, the n0c based on our method has been given as

n0c = k2
e − k2

g +
4π
b3

{
[F1]ria − [F2]ria

}
+

4π
b3

[F1]is
(1− f)4
(1 + 2f)2

. (6)

Here the [ ]ria and the [ ]is are derived from a forward scattering
amplitude of a particle F as follows. The F is composed of the real
part Fr and the imaginary part Fa +Fs where Fa and Fs, respectively,
are produced by absorption and scattering; hence we define [F ]ria =
Fr + iFa and [F ]is = iFs. Then [F ]is yields the coherence attenuation
by multiple scattering. The equation (6) is also applicable to a random
medium of lossless particles. For the lossless random medium, we have
Fa = 0 and therefore the [ ]ria and the [ ]is correspond to “Re[ ]” and
“i Im[ ]” described in [6], respectively.

In (1), κe and κs, respectively, are given as

κe = 2K ′′ (7)

κs =
n0|c|2

6π
(1− f)4
(1 + 2f)2

. (8)
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The reflection and transmission angles at the boundaries are assumed
to obey Snell’s law for K ′ because K ′ � K ′′. The boundary conditions
for the Stokes vector at z = 0 and −d are as follows: for 0 ≤ θ ≤ π/2,


I(π − θ, φ, 0) = T01(θ0) · I0i(π − θ0, φ0, 0) + R10(θ) · I(θ, φ, 0)

I(θ, φ,−d) = R12(θ) · I(π − θ, φ,−d)
(9)

where I0i(π − θ0, φ0, 0) is the Stokes vector of the incident plane-wave
from region 0, and expressed as

I0i(π − θ0, φ0, 0) = I0i

δ(θ0 − θ0i)δ(φ0 − φ0i)
sin θ0

, (10)

where δ(·) is the Dirac delta function and I0i(π − θ0, φ0, 0) =
[Iv0i, Ih0i, U0i, V0i]t where the superscript t denotes transposition. The
reflection matrix R10(θ) relates the upward Stokes vector to downward
one in region 1 at z = 0 for wave traveling from region 1 to 0. Similarly,
R12(θ) is the reflection matrix for the Stokes vector at z = −d.
T01(θ) denotes the transmission matrix which connects the downward
Stokes vector in region 0 to that in region 1. The transmission and
the reflection matrices for the Stokes vector are given in Appendix
A. I(θ, φ, z) and I(π − θ, φ, z) denote the upward and downward
propagating Stokes vectors in region 1, respectively.

The scattered Stokes vector I0s(θ0s, φ0s, 0) = [Iv0s, Ih0s, U0s, V0s]t in
the direction (θ0s, φ0s) is expressed as

I0s(θ0s, φos, 0) = T10(θs) · I(θs, φs, 0), (11)

where T10(θs) is the transmission matrix of the Stokes vector from
region 1 to region 0. When we assume that an α-polarized wave
intensity Iα0i(π − θ0i, φ0i, 0) is incident on the random medium in the
direction (π− θ0i, φ0i) and a β-polarized wave intensity Iβ0s(θ0s, φ0s, 0)
is scattered in the backward direction (θ0i, φ0i + π), then the
backscattering cross section σβα(θ0i) is defined as

σβα(θ0i) = 4π
cos θ0iIβ0s(θ0i, π + φ0i, 0)

Iα0i

, (12)

where α, β = vertically(v) or horizontally(h).

2.2. Numerical Solution of the DMRT

Water is lossy material in microwave region [4]. Therefore the
scattering effect in the random medium becomes small, and we can
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obtain an efficient solution of (1) by iteration. The radiative transfer
equation and boundary conditions can be cast in an integral equation
for 0 ≤ θ ≤ π/2 as follows.

I(θ, φ, z) = e−κez sec θF(θ) · R12(θ) · T01(θ0)

·I0i(π − θ0, φ0, 0)e−2κed sec θ

+ sec θe−κez sec θ κs

4π

∫ π

0
sin θ′dθ′

∫ 2π

0
dφ′

·
[ ∫ z

−d
dz′eκez′ sec θP(θ, φ; θ′, φ′) · I(θ′, φ′, z′)

+F(θ) · R12(θ)e−2κed sec θ
∫ 0

−d
dz′e−κez′ sec θ

·P(π − θ, φ; θ′, φ′) · I(θ′, φ′, z′)
+F(θ) · R12(θ) · R10(θ)e−2κed sec θ

·
∫ 0

−d
dz′eκez′ sec θP(θ, φ; θ′, φ′) · I(θ′, φ′, z′)

]
, (13)

I(π − θ, φ, z) = eκez sec θF(θ) · T01(θ0) · I0i(π − θ0, φ0, 0)

+ sec θeκez sec θ κs

4π

∫ π

0
sin θ′dθ′

∫ 2π

0
dφ′

·
[∫ 0

z
e−κez′ sec θdz′P(π − θ, φ; θ′, φ′) · I(θ′, φ′, z′)

+F(θ) · R10(θ)
∫ 0

−d
eκez′ sec θdz′

·P(θ, φ; θ′, φ′) · I(θ′, φ′, z′)

+F(θ) · R10(θ) · R12(θ)e−2κed sec θ
∫ 0

−d
e−κez′ sec θdz′

· P(π − θ, φ; θ′, φ′) · I(θ′, φ′, z′)
]
, (14)

F(θ) = [1− R10(θ) · R12(θ) exp(−2κed sec θ)]−1. (15)

The first terms in (13) and (14) are the zeroth order solution. The first
order solutions are obtained by substituting the zeroth order solution
into the I(θ′, φ′, z′) in (13) and (14) and integrating them with respect
to z′, θ′ and φ′. The results are, for 0 ≤ θ ≤ π/2,

I(1)(θ, φ, z) =
κs

4π
e−κez sec θ sec θ

ε0 cos θ0i
Re[εeffε0] cos θi

·
{
P(θ, φ; θi, φ0) · Ju(θi)

1
κe(sec θ − sec θi)
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·
[
eκez(sec θ−sec θi) − e−κed(sec θ−sec θi)

]
+P(θ, φ;π − θi, φ0) · Jd(θi)

1
κe(sec θ + sec θi)

·
[
eκez(sec θ+sec θi) − e−κed(sec θ+sec θi)

]
+F(θ) · R12(θ)e−2κed sec θ

· [P(π − θ, φ; θi, φ0) · Ju(θi)D3(θ, θi)
+P(π − θ, φ;π − θi, φ0) · Jd(θi)D4(θ, θi)]

+F(θ) · R12(θ) · R10(θ)e−2κed sec θ

· [P(θ, φ; θi, φ0) · Ju(θi)D1(θ, θi)

+P(θ, φ;π − θi, φ0) · Jd(θi)D2(θ, θi)]
}
, (16)

I(1)(π − θ, φ, z) =
κs

4π
eκez sec θ sec θ

ε0 cos θ0i
Re[εeffε0] cos θi

·
{
P(π − θ, φ; θi, φ0) · Ju(θi)

−1
κe(sec θ − sec θi)

·
[
1− e−κez(sec θ+sec θi)

]
+P(π − θ, φ;π − θi, φ0) · Jd(θi)

−1
κe(sec θ − sec θi)

·
[
1− e−κez(sec θ−sec θi)

]
+F(θ) · R10(θ) · [P(θ, φ; θi, φ0) · Ju(θi)D1(θ, θi)
+P(θ, φ;π − θi, φ0) · Jd(θi)D2(θ, θi)]

+F(θ) · R10(θ) · R12(θ)e−2κed sec θ

· [P(π − θ, φ; θi, φ0) · Ju(θi)D3(θ, θi)

+P(π − θ, φ;π − θi, φ0) · Jd(θi)D4(θ, θi)]
}

(17)

where the superscript of I shows the order of iteration, Re[ ] denotes
“the real part of” and θi is the transmission angle at z = 0 for
propagation from region 0 to 1. Here

Ju(θi) = F(θi) · R12(θi) · T01(θ0i) · I0i(π − θ0, φ0, 0)e−2κed sec θi ,

Jd(θi) = F(θi) · T01(θ0i) · I0i(π − θ0, φ0, 0),
(18)
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D1(θ1, θ2) =
1

κe(sec θ1 − sec θ2)

[
1− e−κed(sec θ1−sec θ2)

]
,

D2(θ1, θ2) =
1

κe(sec θ1 + sec θ2)

[
1− e−κed(sec θ1+sec θ2)

]
,

D3(θ1, θ2) =
−1

κe(sec θ1 + sec θ2)

[
1− eκed(sec θ1+sec θ2)

]
,

D4(θ1, θ2) =
−1

κe(sec θ1 − sec θ2)

[
1− eκed(sec θ1−sec θ2)

]
.

(19)

The second order solution I(2)(θ, φ, z) is obtained by substituting the
first order solution into I(θ′, φ′, z′) in (13) and (14) and carrying out
integration with respect to z′, θ′ and φ′. The Stokes vector I(θ, φ, z)
for 0 ≤ θ ≤ π is expressed with good accuracy as the sum of the zeroth,
first and second order solutions for the small scattering case mentioned
at the beginning of Subsection 2.2;

I(θ, φ, z) � I(0)(θ, φ, z) + I(1)(θ, φ, z) + I(2)(θ, φ, z). (20)

The validity of (20) can be shown by comparing with directly numerical
analysis of (1). I(1)(θ, φ, 0) is easily obtained from (16) and (17) and
the expression of I(2)(θ, φ, 0) for 0 ≤ θ ≤ π/2 is given in Appendix B.
Then, the scattered Stokes vector and the backscattering cross section
are obtained from (11) and (12), respectively.

3. NUMERICAL RESULTS

In this section, we numerically shows the scattering cross section of a
moist soil model σβα by changing the fractional volume of water fw and
the incident angle and polarization of incident waves. We also discuss
the possibility of sensing the water content of soil for the simple model
by characterizing the scattering cross sections as a function of fw.
The physical parameters are assumed to be the operating frequency
ν = 2 GHz, εg = 3.0 and a = 1 mm, and the dielectric constant of
water εw is calculated from Debye’s equation [4]. The parameters in
the DMRT are determined by using the equations (3) to (8).

3.1. Scattering from Free Water

We first assume that the particles are homogeneous spherical water
drops of εwε0; hence we have fw = f . Figure 2 shows κe, κs and εeff as
functions of fw. We can find that κe and εeff increase monotonically
as fw becomes large while κs increases until around fw = 0.2 and then
decreases. This behavior is physically valid and different from that of
the CRT.
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Figure 2. (a) The extinction rate κe, the scattering coefficient κs and
(b) the effective dielectric constant εeff as a function of the fractional
volume of water fw, when the operating frequency is 2 GHz, a =
1 mm, εg = 3.0.
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Figure 3. The backscattering cross section σβα as a function of the
fractional volume of water fw for both cases: (a) v-polarized wave
intensity incidence and (b) h-polarized wave intensity incidence, when
the operating frequency is 2 GHz, a = 1 mm, εg = 3.0, ε2 = εeff, d =
1, 2, 5 m, θ0i = 13.7 degree.

We consider effects of the layer thickness on σβα. Figure 3 shows
σβα as a function of fw for θ0i = 13.7 degree, ε2 = εeff and d = 1, 2 and
5 m. The σβα behaves as a convex function of fw for the three cases of
d. As fw becomes larger than about 0.05, all the σβα have the same
value, which means that σβα does not depend on the layer thickness
for the case of d ≥ 1 m. The smaller d makes larger the value of fw at
which σβα takes a maximum.
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Figure 4. As Fig. 3, but with ε2 = εeff ,∞ and d = 1 m.

Next we assume ε2 = εeff (no reflection) and ε2 = ∞ (total
reflection) to investigate the effect of bottom layer. Figure 4 depicts
the effect on σβα. For fw < 0.05, the multi-reflection of waves due
to both boundaries at z = 0 and −d yields the increase in σβα for
total reflection case. The bottom layer makes a small contribution
to σvv and σhh compared with σvh and σhv because the co-polarized
wave intensity mainly depends on the first order solution. This result
suggests that σvh and σhv are applicable to the detection of the bottom
layer if these cross-polarized wave intensities are measurable.

Although σβα depends on the layer thickness and the bottom layer
for small fw, it has such a common property that it first increases to a
certain level and then decreases as fw becomes large. Therefore we have
one value of σβα at different two values of fw and cannot determine fw
directly from the measurement of σβα.

The ratio of σvv to σhh is illustrated in Fig. 5 for θ0i = 13.7, 33.7
and 53.7 degree and ε2 = εeff. Figure 5 shows that σvv/σhh is more
sensitive to larger incident angles. The trade-off for the large change
in σvv/σhh is the decrease in σαα for large incident angles. Figure 6
shows σvv/σhh as a function of fw when d = 1, 2 and 5 m, ε2 = εeff
and ∞ and θ0i = 53.7 degree. We can observe that the difference of
σvv/σhh between no and total reflection cases is about 4 dB at fw <
0.001, independent of the layer thickness and that there is a one-to-one
correspondence between σvv/σhh and fw at fw > 0.05. The one-to-one
correspondence means that the measurement of σvv/σhh is applicable
to sensing of the soil moisture at fw > 0.05. The threshold value of fw,
at which σvv/σhh becomes independent of the bottom layer, becomes
small for large d.
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Figure 5. The ratio of σvv to σhh as a function of the fractional
volume of water fw, when the operating frequency = 2 GHz, a = 1 mm,
εg = 3.0, ε2 = εeff, d = 1 m, θ0i = 13.7, 33.7, 53.7 degree.

3.2. Scattering from Soil Particles Coated with Water

It is well known that bound water, which coats soil particle, mainly
contributes to the dielectric properties of moist soil. Therefore, in this
subsection we assume particles of radius a to be spherical soil particles
of εsε0 and radius a1 coated with water, as shown in Fig. 7. In this
case, fw = (1−a3

1/a
3)f , and we assume εs = 4.7 [4]. The ratio of a1 to

a is assumed to be 0.9, 0.75, 0.5, and 0.0, where particles of a1/a = 0.0
correspond to free water drops. In the following calculations, the value
of f is considered to be up to 0.63 because spheres are deformed at
f > 0.63; hence the maximum values of fw for a1/a = 0.9, 0.75, 0.5,
and 0.0 are 0.17, 0.36, 0.55, and 0.63, respectively.

We clarify the effects of coating water on σβα and σvv/σhh. The
σvv and σhv for no and total reflection case are illustrated in Figs. 8
and 9, respectively, by assuming the same physical parameters as used
in Fig. 3, but θ0i = 53.7 degree. The σhh and σvh also are depicted
in Figs. 10 and 11 under the same physical conditions of the model as
used in Figs. 8 and 9, respectively. These figures 8 to 11 show that
all the σβα have the peak values at smaller fw as a1/a increases. We
can observe that the thickness of coating water has large contribution
to the σβα. These behaviors of σβα are explained from the following
facts. The σβα have the similar curves as a function of f for all the
a1/a except for their magnitude. The value of f at a certain value of
fw depend on a1/a because of fw = (1− a3

1/a
3)f . Therefore σβα show

different curves as a function of fw for all the a1/a. Figure 12 shows
σvv/σhh as a function of fw for θ0i = 53.7 degree. This figure indicates
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Figure 6. As Fig. 5, but with ε2 = εeff,∞, d = 1, 2, 5 m and θ0i = 53.7
degree.

Figure 7. Soil particle coated with water.

Figure 8. The backscattering cross section σβα as a function of the
fractional volume of water fw, when the operating frequency = 2 GHz,
a = 1 mm, εg = 3.0, εs=4.7, ε2 = εeff, d = 1 m, θ0i = 53.7 degree.
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Figure 9. As Fig. 8, but with ε2 =∞.

Figure 10. As Fig. 8, but with h-polarized wave intensity incidence.

Figure 11. As Fig. 9, but with h-polarized wave intensity incidence.
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Figure 12. The ratio of σvv to σhh as a function of the fractional
volume of water fw, when the operating frequency=2 GHz, a= 1 mm,
εg = 3.0, ε2 = εeff, d = 1 m, θ0i = 53.7 degree, a1/a = 0.9, 0.75, 0.5,
0.0.

that the difference of the thickness of coating water contributes much
less to σvv/σhh than σβα for large fw, because the thickness effects on
σvv and σhh are almost the same.

4. CONCLUSION

We have assumed a moist soil model as a random medium layer
sandwiched between free space and a homogeneous bottom space
and evaluated scattering cross sections of the layer by using a dense
medium radiative transfer equation (DMRT). A multiple scattering
method applicable to a random medium containing many particles of
high dielectric constant has been used to estimate the parameters in
the DMRT. We have clarified the characteristics of scattering cross
sections of the layer by changing the incident angle and polarization
of incident waves and the water content. We have also computed the
scattering cross sections for two types of spherical particles: free water
and soil particles coated with water. The detection possibility of a
water content of soil has been discussed mainly on the basis of the
following characteristics. One is that the ratio of the co-polarized
backscattering cross section for vertical polarization incidence to that
for horizontal polarization incidence has an one-to-one correspondence
to a volumetric water content larger than 0.05. The other is that
the ratio is less dependent on the thickness of coating water than the
scattering cross sections of the layer are.
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APPENDIX A. BOUNDARY CONDITIONS FOR THE
STOKES VECTOR AT A PLANE SURFACE

When a plane-wave is incident on a medium of εj from one of εi with
incident angle θi, the reflection and transmission matrices at the plane
surface Rij(θi) and Tij(θi) are given as follows:

Rij(θi) =



rvij(θi) 0 0 0

0 rhij(θi) 0 0
0 Re[Rh

ij(θi)R
v∗
ij (θi)] −Im[Rh

ij(θi)R
v∗
ij (θi)]

0 0 Im[Rh
ij(θi)R

v∗
ij (θi)] Re[Rh

ij(θi)R
v∗
ij (θi)]




(A1)
and

Tij(θi) =
εj
εi




tvij(θi) 0 0
0 thij(θi) 0

0
cos θt
cos θi

Re[T h
ij (θi)T

v∗
ij (θi)]

0 0
cos θt
cos θi

Im[T h
ij (θi)T

v∗
ij (θi)]

0
0

−cos θt
cos θi

Im[T h
ij (θi)T

v∗
ij (θi)]

cos θt
cos θi

Re[T h
ij (θi)T

v∗
ij (θi)]




(A2)

where, R(T )hij, R(T )vij denote the Fresnel reflection (transmission)
coefficients of h and v polarized waves, respectively. The asterisk
denotes complex conjugate, θt is the transmission angle, and

T v
ij (θi) = 1 +Rv

ij(θi) (A3)

T h
ij (θi) = 1 +Rh

ij(θi) (A4)

rvij(θi) = |Rv
ij(θi)|2 (A5)

rhij(θi) = |Rh
ij(θi)|2 (A6)

tvij(θi) = 1− rvij(θi) (A7)

thij(θi) = 1− rhij(θi). (A8)



Numerical analysis of scattered power 215

APPENDIX B. SECOND ORDER SOLUTION I(2)(θ, φ, 0)
FOR 0 ≤ θ ≤ π/2

I(2)(θ, φ, 0) = sec θF(θ) ·
∫ π/2

0
dθ′ sin θ′ sec θ′

ε0 cos θ0i
Re[εeffε0] cos θi

·
{
M(θ, θ′;E; θ′, θi) · Ju(θi)

1
κe(sec θ′ − sec θi)

·
[
D1(θ, θi)−D1(θ, θ′)e−κed(sec θ′−sec θi)

]
+M(θ, θ′;E; θ′, π − θi) · Jd(θi)

1
κe(sec θ′ + sec θi)

·
[
D2(θ, θi)−D1(θ, θ′)e−κed(sec θ′+sec θi)

]
+ e−2κed sec θ′

·
[
M(θ, θ′;FR12;π−θ′, θi)·Ju(θi)D3(θ′, θi)

+M(θ, θ′;FR12;π−θ′, π−θi) ·Jd(θi)D4(θ′, θi)
]
D1(θ, θ′)

+e−2κed sec θ′[M(θ, θ′;FR12R10; θ′, θi)·Ju(θi)D1(θ′, θi)
+M(θ, θ′;FR12R10; θ′, π−θi) ·Jd(θi)D2(θ′, θi)

]
D1(θ, θ′)

+M(θ, π − θ′;E;π − θ′, θi) · Ju(θi)
−1

κe(sec θ′ + sec θi)
·
[
D2(θ, θ′)−D1(θ, θi)

]
+ M(θ, π − θ′;E;π − θ′, π − θi)

·Jd(θi)
−1

κe(sec θ′ − sec θi)
[
D2(θ, θ′)−D2(θ, θi)

]
+

[
M(θ, π − θ′;FR10; θ′, θi) · Ju(θi)D1(θ′, θi)

+M(θ, π−θ′;FR10; θ′, π−θi) ·Jd(θi)D2(θ′, θi)
]
D2(θ, θ′)

+e−2κed sec θ′ [M(θ, π − θ′;FR10R12;π − θ′, θi)
·Ju(θi)D3(θ′, θi)+M(θ, π−θ′;FR10R12;π − θ′, π − θi)

·Jd(θi)D4(θ′, θi)
]
D2(θ, θ′)

}
+ sec θF(θ) · R12(θ)

·e−2κed sec θ
∫ π/2

0
dθ′ sin θ′ sec θ′

ε0 cos θ0i
Re[εeffε0] cos θi

·
{
M(π − θ, θ′;E; θ′, θi) · Ju(θi)

1
κe(sec θ′ − sec θi)

·
[
D3(θ, θi)−D3(θ, θ′)e−κed(sec θ′−sec θi)

]
+M(π − θ, θ′;E; θ′, π − θi) · Jd(θi)

1
κe(sec θ′ + sec θi)
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·
[
D4(θ, θi)−D3(θ, θ′)e−κed(sec θ′+sec θi)

]
+e−2κed sec θ′ [M(π − θ, θ′;FR12;π − θ′, θi)
·Ju(θi)D3(θ′, θi) + M(π − θ, θ′;FR12;π − θ′, π − θi)
·Jd(θi)D4(θ′, θi)

]
D3(θ, θ′) + e−2κed sec θ′

·
[
M(π − θ, θ′;FR12R10; θ′, θi) · Ju(θi)D1(θ′, θi)

+M(π−θ, θ′;FR12R10; θ′, π−θi) ·Jd(θi)D2(θ′, θi)
]
D3(θ, θ′)

+M(π − θ, π − θ′;E;π − θ′, θi) · Ju(θi)
−1

κe(sec θ′ + sec θi)
·
[
D4(θ, θ′)−D3(θ, θi)

]
+M(π−θ, π−θ′;E;π − θ′, π − θi)

·Jd(θi)
−1

κe(sec θ′ − sec θi)
[
D4(θ, θ′)−D4(θ, θi)

]
+

[
M(π − θ, π − θ′;FR10; θ′, θi) · Ju(θi)D1(θ′, θi)

+M(π − θ, π − θ′;FR10; θ′, π − θi) ·Jd(θi)D2(θ′, θi)
]

·D4(θ, θ′)+e−2κed sec θ′[M(π−θ, π−θ′;FR10R12;π−θ′, θi)
·Ju(θi)D3(θ′, θi) + M(π − θ, π − θ′;FR10R12;
π − θ′, π − θi) · Jd(θi)D4(θ′, θi)

]
D4(θ, θ′)

}
(B1)

where E denotes the unit matrix and

M(θ, θ1;AB; θ2, θi) =
(
κs

4π

)2 ∫ 2π

0
P(θ, φ; θ1, φ′)

·A(θ2) · B(θ2) · P(θ2, φ′; θi, φi)dφ′. (B2)
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