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Abstract—The purpose of this paper is to use the analytical
asymptotic extraction technique to analyze the bend discontinuity.
We show that the derived analytical techniques significantly reduce
the computational time while improving the accuracy compared
to the conventional method. Especially, the advantage of the
proposed method can eliminate the truncation error for evaluating
the asymptotic part of impedance matrix. The proposed method
has applied for solving the bend discontinuity, and verified with
measurement results.
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1. INTRODUCTION

The conventional spectral domain method is too time-consuming to
fill the impedance matrix elements because the matrix elements are
expressed in terms of infinite double integrals and their integrands
exhibit slow convergence and highly oscillating behavior. In the
previous research of gap discontinuities, the analytical transformation
of the infinite double integral into a finite one-dimensional integral in
calculating the asymptotic impedance matrix elements had successfully
in ref. [1]. This showed the dramatic improvement of the computation
time for evaluating the overall impedance matrix elements without
sacrificing the accuracy. With extension of the previous work, this
paper presents efficient computational techniques in case of right-
angled bend discontinuity. In order to describe the unknown current
distributions, two kinds of expansion functions are used. The matrix
element evaluations of the interactions between rooftop and half
rooftop basis functions require extensive computation time. To
overcome this computation time, we developed new analytical formulas
for evaluating the asymptotic impedance matrix by using the above
integral transform method. We show that the derived analytical
techniques significantly reduce the computational time and improve the
accuracy over the conventional method to evaluate the asymptotic part
of impedance matrix by eliminating the truncation error for solving
right-angled bend discontinuity. To validate this new approach, the
results of commercial software and measurement are compared with
those of the proposed method.

2. FORMULATION OF THE PROBLEM

The geometry of the bend discontinuity with a substrate is shown in
Fig. 1. The substrate has a thickness of d and a relative permittivity of
εr. The substrate and ground plane are assumed to be infinitely wide
in the horizontal plane, and the conductors are assumed to be lossless
and infinitesimally thin.

In order to apply the moment method, we define the dyadic
Green’s function due to infinitesimal current source on a grounded
dielectric slab, which takes the form of [2, 3]

G̃xx(kx, ky) = −j Z0

k0

(εrk2
0−k2

x)k2 + jk1(k2
0−k2

x) tan(k1d)
TeTm

tan(k1d) (1)

G̃yy(kx, ky) = −j Z0

k0

(εrk2
0−k2

y)k2 + jk1(k2
0−k2

y) tan(k1d)
TeTm

tan(k1d) (2)
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Figure 1. The geometry of a right-angle bend discontinuity.

G̃xy(kx, ky) = G̃yx(kx, ky) = −j Z0

k0

kxky tan(k1d)[k2+jk1 tan(k1d)]
TeTm

(3)

where

Te = k1 + jk2 tan(k1d)
Tm = εrk2 + jk1 tan(k1d)
k2

1 = εrk
2
0 − k2

x − k2
y, Im{k1} ≤ 0 (4)

k2
2 = k2

0 − k2
x − k2

y, Im{k2} ≤ 0

β =
√
k2
x + k2

y

and k0 = ω
√
µ0ε0 where ω is the angular frequency, µ0 and ε0 are the

permeability and permittivity of free-space, respectively.
The subscripts xy in G̃xy(kx, ky) represent an x̂-directed electric

field due to an infinitesimal ŷ-directed current source. The subscripts of
the other Green’s functions have similar designations. The respective
asymptotic Green’s functions of eqs. (1)–(3), for large β are given by

G̃∞xx(kx, ky) = −j Z0

k0

{
k2

0

2β
− k2

x

(εr + 1)β

}
(5)
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G̃∞yy(kx, ky) = −j Z0

k0

{
k2

0

2β
−

k2
y

(εr + 1)β

}
(6)

G̃∞xy(kx, ky) = G̃∞yx(kx, ky) = j
Z0

k0

kxky
(εr + 1)β

(7)

To solve for the surface current density on the patch using moment
method, the next step is to express the surface current density as a
linear combination of the basis functions, which are chosen in this
work to be roof-top and half roof-top. A set of roof-top functions are
employed to model the current density distribution on the conductor.
The current densities at the load terminals are modeled by a half roof-
top basis functions. The current densities can be expressed as

Jxmn(x, y) =
(
1− |x− xm|

∆x

)
·rect

(y − yn
∆y

)
,
|x− xm|

∆x
<1,
|y − yn|

∆y
<

1
2

(8)

Jymn(x, y) = rect
(y − yn

∆y

)
·
(
1− |x− xm|

∆x

)
,
|x− xm|

∆x
<

1
2
,
|y − yn|

∆y
<1

(9)

JxLoad(x, y) =
(
1− x

∆x

)
· rect

(y − yn
∆y

)
,
|x|
∆x

< 1,
|y − yn|

∆y
<

1
2

(10)

JyLoad(x, y) = rect
(y − yn

∆y

)
·
(
1− x

∆x

)
,
|x− xm|

∆x
<

1
2
,
|y|
∆y

< 1 (11)

where
rect

(x
L

)
=

{
1, |x| < L/2
0, |x| > L/2. (12)

The fourier transforms of the x̂-directed roof-top and half roof-top
current density of eq.(8) and eq.(10) can be expressed as

J̃xmn(kx, ky) =
8

∆x
· sin

2(kx∆x
2 )

k2
x

· sin(ky∆y
2 )

ky
· e−j(kxxm+kyyn) (13)

J̃xLoad(kx, ky) =
2

∆x
· 2 sin2(kx∆x

2 )− j∆xkx + j sin kx∆x
k2
x

· sin(ky∆y
2 )

ky
· e−j(kxx0+kyyn) (14)

Using Galerkin’s method, and employing the asymptotic extraction
technique, impedance matrix can be expressed as
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Zmnm′n′ =

− 1
4π2

∫ ∞
∞

∫ ∞
∞
�̃Jmn(kx, ky)

[
G̃(kx, ky)− G̃

∞
(kx, ky)

]
�̃J
∗
m′n′(kx, ky)dkxdky

− 1
4π2

∫ ∞
∞

∫ ∞
∞
�̃Jmn(kx, ky)G̃

∞
(kx, ky)

�̃J
∗
m′n′(kx, ky)dkxdky (15)

ZLoad,mn =

− 1
4π2

∫ ∞
∞

∫ ∞
∞
�̃JLoad(kx, ky)

[
G̃(kx, ky)− G̃

∞
(kx, ky)

]
�̃J
∗
mn(kx, ky)dkxdky

− 1
4π2

∫ ∞
∞

∫ ∞
∞
�̃JLoad(kx, ky)G̃

∞
(kx, ky)

�̃J
∗
mn(kx, ky)dkxdky (16)

The first double integral in eqs. (15) and (16) converges more
rapidly to zero than the double integral of original form. The integrand
of the second infinite double integral in eqs. (15) and (16) exhibits
slowly convergent and highly oscillatory behavior, which leads to
difficulties when attempting to evaluate it using a direct numerical
integration. Therefore, the main objective of this paper is to solve the
second integral in eqs. (15) and (16) by an analytical technique.

3. EVALUATION OF ASYMPTOTIC IMPEDANCE
MATRIX

The asymptotic impedance matrix of the second integral in eq. (15)
and (16), associating with the roof-top, half roof-top functions of eq.
(13) and (14) and the asymptotic Green’s function of eq. (1)–(3), can
be expressed as

Zxx
Asy

mnm′n′ = −
j

π2

Z0

k0

( 8
∆x

)2
{
− k2

0

2
Ixx

a

mnm′n′ +
1

(εr + 1)
Ixx

b

mnm′n′

}
(17)

Zxy
Asy

mnm′n′ =
j

π2

Z0

k0

(
64

∆x ·∆y

)
1

(εr + 1)
Ixymnm′n′ (18)

Zxx
Asy

Load,mn = − j

π2

Z0

k0

( 4
∆x

)2
{
− k2

0

2
Ixx

a

Load,mn +
1

(εr + 1)
Ixx

b

Load,mn

}
(19)

Zxy
Asy

Load,mn =
j

π2

Z0

k0

(
16

∆x ·∆y

)
1

(εr + 1)
IxyLoad,mn (20)
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with

Ixx
a

mnm′n′ =
∫ ∞
0

∫ ∞
0

cos(kxxs)√
k2
x + k2

y

sin2(ky∆y
2 )

k2
y

sin4(kx∆x
2 )

k4
x

cos(kyys)dkxdky

(21)

Ixx
b

mnm′n′ =
∫ ∞
0

∫ ∞
0

cos(kxxs)√
k2
x + k2

y

sin2(ky∆y
2 )

k2
y

sin4(kx∆x
2 )

k2
x

cos(kyys)dkxdky

(22)

Ixymnm′n′ = −
∫ ∞
0

∫ ∞
0

sin(kxxs)√
k2
x + k2

y

sin3(ky∆y
2 )

k2
x

sin3(kx∆x
2 )

k2
y

sin(kyys)dkxdky

(23)

Ixx
a

Load,mn = 2
∫ ∞
0

∫ ∞
0

cos(kxxs)√
k2
x + k2

y

sin2(ky∆y
2 )

k2
y

sin4(kx∆x
2 )

k4
x

cos(kyys)dkxdky

+
∫ ∞
0

∫ ∞
0

1√
k2
x + k2

y

sin2(ky∆y
2 )

k2
y

sin2(kx∆x
2 )

k4
x

×{kx sin(kxxs)∆x−sin(kx∆x) sin(kxxs)} cos(kyys)dkxdky
(24)

Ixx
b

Load,mn = 2
∫ ∞
0

∫ ∞
0

cos(kxxs)√
k2
x + k2

y

sin2(ky∆y
2 )

k2
y

sin4(kx∆x
2 )

k2
x

cos(kyys)dkxdky

+
∫ ∞
0

∫ ∞
0

1√
k2
x + k2

y

sin2(ky∆y
2 )

k2
y

sin2(kx∆x
2 )

k2
x

×{kx sin(kxxs)∆x−sin(kx∆x) sin(kxxs)} cos(kyys)dkxdky
(25)

IxyLoad,mn = −
∫ ∞
0

∫ ∞
0

cos(kxxs)√
k2
x + k2

y

sin(ky∆y
2 )

k2
x

sin3(kx∆x
2 )

k2
y

×{∆xkx sin(kyys)− sin(kx∆x) sin(kyys)}dkxdky

+2
∫ ∞
0

∫ ∞
0

sin(kxxs)√
k2
x+k2

y

sin3(kx∆x
2 )

k2
x

sin3(ky∆y
2 )

k2
y

sin(kyys)dkxdky

(26)

where the even and odd properties of the integrand are used to reduce
the integration range in eqs. (21)–(26).



Analytical asymptotic extraction technique 225

Equations (21)–(23) already had solved in analytical solution in
ref. [1]. Thus this paper shows an analytic solution for eqs. (24)–(26).
Each integrand in eqs. (24)–(26) is not separable in terms of kx and ky
due to the 1/

√
k2
x + k2

y term, which prevents it from being reduced to
the product of two one-dimensional integrals. By introducing the same
technique represented by [4, eq. (11)], the integrals of eqs. (24)–(26)
can be expressed as

Ixx
a

Load,mn =
2
π

∫ ∞
−∞

{ ∫ ∞
0

K0(ky|χ− xs|)
sin2(ky∆y

2 )
k2
y

cos(kyys)dky

×
∫ ∞
0

sin4(kx∆x
2 )

k4
x

cos(kxχ)dkx

}
dχ

+
1
π

∫ ∞
−∞

{ ∫ ∞
0

K0(ky|χ− xs|)
sin2(ky∆y

2 )
k2
y

cos(kyys)dky

×
∫ ∞
0

∆x sin2(kx∆x
2 )

k3
x

sin(kxxs) cos(kxχ)dkx

}
dχ

− 1
π

∫ ∞
−∞

{ ∫ ∞
0

K0(ky|χ− xs|)
sin2(ky∆y

2 )
k2
y

cos(kyys)dky

×
∫ ∞
0

sin2(kx∆x
2 ) sin(kx∆x)
k4
x

sin(kxxs) cos(kxχ)dkx

}
dχ

(27)

Ixx
b

Load,mn =
2
π

∫ ∞
−∞

{ ∫ ∞
0

K0(ky|χ− xs|)
sin2(ky∆y

2 )
k2
y

cos(kyys)dky

×
∫ ∞
0

sin4(kx∆x
2 )

k2
x

cos(kxχ)dkx

}
dχ

+
1
π

∫ ∞
−∞

{ ∫ ∞
0

K0(ky|χ− xs|)
sin2(ky∆y

2 )
k2
y

cos(kyys)dky

×
∫ ∞
0

∆x sin2(kx∆x
2 )

kx
sin(kxxs) cos(kxχ)

}
dχ

− 1
π

∫ ∞
−∞

{ ∫ ∞
0

K0(ky|χ− xs|)
sin2(ky∆y

2 )
k2
y

cos(kyys)dky

×
∫ ∞
0

sin2(kx∆x
2 ) sin(kx∆x)
k2
x

sin(kxxs) cos(kxχ)

}
dχ (28)
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IxyLoad,mn = − 1
π

∫ ∞
∞

{ ∫ ∞
0

K0(ky|χ− xs|)
sin3(ky∆y

2 )
k2
y

sin(kyys)dky

×
∫ ∞
0

∆x sin(kx∆x
2 )

kx
cos(kxχ)dkx

}
dχ

− 1
π

∫ ∞
∞

{ ∫ ∞
0

K0(ky|χ− xs|)
sin3(ky∆y

2 )
k2
y

sin(kyys)dky

×
∫ ∞
0

∆x sin(kx∆x
2 ) sin(kx∆x)
k2
x

cos(kxχ)dkx

}
dχ

− 2
π

∫ ∞
−∞

{ ∫ ∞
0

K0(kyχ)
sin3(ky∆y

2 )
k2
y

sin(kyys)dky

×
∫ ∞
0

sin3(kx∆x
2 )

k2
x

sin(kxxs) cos(kxχ)dkx

}
dχ (29)

where K0 is the modified Bessel function of the first kind.
The infinite six-fold integrals of eqs. (27)–(29) can be converted

into three 1-D integrals if the separate integrals with respect to kx
and ky can be evaluated in closed form. To accomplish this, the first
integrals in eqs. (27)–(29) with respect to ky are defined as

A(χ− xs) =
∫ ∞
0

K0(ky|χ− xs|)
sin2(ky∆y

2 )
k2
y

cos(kyys)dky (30)

B(χ) =
∫ ∞
0

K0(kyχ)
sin3(ky∆y

2 )
k2
y

sin(kyys)dky (31)

where A(χ − xs) and B(χ) can be solved analytically. Their detailed
derivations are presented in ref. [1].

The second integrals in eqs. (27) and (28), with respect to kx, were
derived in [1] and integral is expressed as

Sa(χ) =
∫ ∞
0

sin4(kx∆x
2 )

k4
x

cos(kxχ)dkx

=




π
96{(2∆x− |χ|)3 − 4(∆x− |χ|)3}, |χ| < ∆x
π
96(2∆x− |χ|)3, ∆x ≤ |χ| < 2∆x
0, otherwise

(32)

Sd(χ) =
∫ ∞
0

sin4(kx∆x
2 )

k2
x

cos(kxχ)dkx
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=




π
2 (1

4∆x− 3
8χ), |χ| < ∆x

π
2 (−1

4∆x+ 1
8χ), ∆x ≤ |χ| < 2∆x

0, |χ| ≥ 2∆x
(33)

By using formula 3.828.5 and 3.828.15 of [5], we can get the following
formulas to evaluate:

PSb(χ) =
∫ ∞
0

sin2(kx∆x
2 )

k3
x

sin(kxχ)dkx

=

{
π
4

(
∆x|χ| − χ2

2

)
, |χ| < ∆x

0, otherwise
(34)

PSc =
∫ ∞
0

sin2(kx∆x
2 ) sin(kx∆x)
k4
x

sin(kxχ)dkx

=



− π

16(4∆x2 − 2∆xχ+ 1
3χ

3), −2∆x < χ < −2
3∆x

π
8 (2

3∆x2χ− 1
3χ

3), −2
3∆x < χ < 2

3∆x
π
16(4∆x2 − 2∆xχ+ 1

3χ
3), 2

3∆x < χ < 2∆x
0, otherwise

(35)

With the aid of eq. (34), the fourth integral of eq. (27) with respect
kx is represented by

Sb(χ) =
∫ ∞
0

sin2(kx∆x
2 )

k3
x

sin(kxxs) cos(kxχ)dkx

=
1
2
[PSb(χ+ xs)− PSb(χ− xs)] (36)

In this manner, the sixth integral of eq. (27) with respect kx is
represented by

Sc(χ) =
∫ ∞
0

sin2(kx∆x
2 ) sin(kx∆x)
k4
x

sin(kxxs) cos(kxχ)dkx

=
1
2
[PSc(χ+ xs)− PSc(χ− xs)] (37)

With the aid of eq. (36) and eq. (37), eq. (27) is reduced to

Ixx
a

Load,mn =
2
π

∫ 2∆x

−2∆x
A(χ− xs) · Sa(χ)dχ

+
∆x
π

∫ ∆x+xs

−∆x+xs
A(χ− xs) · PSb(χ− xs)dχ

− 1
π

∫ 2∆x+xs

−2∆x+xs
A(χ− xs) · PSc(χ− xs)dχ (38)
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where the even property of A(χ) is used to reduce the two integrals to
one integral.

In the same way of eq. (27), we can get the analytical formula
of eq. (28). By using formula 3.828.3 and 3.828.13.2 of [5], it can be
written as

PSe(χ) =
∫ ∞
0

sin2(kx∆x
2 )

kx
sin(kxχ)dkx =

π

4
rect

( χ

2∆x

)
(39)

PSf (χ) =
∫ ∞
0

sin2(kx∆x
2 ) sin(kx∆x)
k2
x

sin(kxχ)dkx

=




π
8 (χ), −2∆x < χ < −2

3∆x
π
4 (χ), −2

3∆x < χ < 2
3∆x

−π
8 (χ), 2

3∆x < χ < 2∆x
0, otherwise

(40)

With aid of eq. (39), eq. (40), the fourth and sixth integrals of eq.
(28) with respect to kx are represented by

Se(χ) =
∫ ∞
0

sin2(kx∆x
2 )

kx
sin(kxxs) cos(kxχ)dkx

=
1
2
[PSe1(χ+ xs)− PSe1(χ− xs)] (41)

Sf (χ) =
∫ ∞
0

sin2(kx∆x
2 ) sin(kx∆x)
k2
x

sin(kxxs) cos(kxχ)dkx

=
1
2
[PSe2(χ+ xs)− PSe2(χ− xs)] (42)

With the aid of eq. (41) and eq. (42), eq. (28) is reduced to

Ixx
b

Load,mn =
2
π

∫ 2∆x

−2∆x
A(χ− xs) · Sd(χ)dχ

+
∆x
π

∫ ∆x+xs

−∆x+xs
A(χ− xs) · PSe(χ− xs)dχ

− 1
π

∫ 2∆x+xs

−2∆x+xs
A(χ− xs) · PSf (χ− xs)dχ (43)

The second and fourth integrals in eq. (29), with respect to kx,
were derived in Appendix A, and written as follows;

Sg(χ) =
∫ ∞
0

sin(kx∆x
2 )

kx
cos(kxχ)dkx =

{
π
2 , |χ| < ∆x

2
0, |χ| > ∆x

2

(44)
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Sh(χ) =
∫ ∞
0

sin(kx∆x
2 ) sin(kx∆x)
k2
x

cos(kxχ)dkx

=




π
2 (∆x

4 ), |χ| < ∆x
2

π
2 (3

8∆x− 1
4 |χ|), ∆x

2 ≤ |χ| < 3∆x
2

0, 3∆x
2 < |χ|

(45)

By taking the derivative with respect to b on both sides of [5],
formula 3.828.15 with changing the parameters can be rewritten as;

PSi(χ) =
∫ ∞
0

sin3(kx∆x
2 )

k2
x

sin(kxχ)dkx

=



−π

8 (3∆x
2 + χ), −3∆x

2 < χ < −∆x
2

π
4 (χ), −∆x

2 < χ < ∆x
2

π
8 (3∆x

2 − χ), ∆x
2 < χ < 3∆x

2
0, otherwise.

(46)

With the aid of eq. (46), the sixth integral of eq. (29) with respect
to kx is represented by

Si(χ) =
∫ ∞
0

sin3(kx∆x
2 )

k2
x

sin(kxxs) cos(kxχ)dkx

=
1
2
[PSi(χ+ xs)− PSi(χ− xs)]. (47)

Since Sg, Sh, and PSi are compactly supported in the finite region,
the infinite double integrals of eq. (29) can be converted into finite 1-D
integrals as follows;

IxyLoad,mn = −∆x
π

∫ ∆x
2
−xs

−∆x
2
−xs
B(χ) · Sg(χ+ xs)dχ

−∆x
π

∫ 3∆x
2
−xs

− 3∆x
2
−xs
B(χ) · Sh(χ+ xs)dχ

+
1
π

∫ 3∆x
2

+xs

− 3∆x
2

+xs
B(χ) · PSi(χ− xs)dχ (48)

In order to verify, we make comparisons between the two methods
(the finite 1-D integrals and the other using double infinite integrals)
in terms of accuracy and execution time. As an example, the finite
1-D integrals of eq. (38) and eq. (43) are evaluated at the parameters
∆x = ∆y = 1 and ys = 0 · ∆y for 0 ≤ xs ≤ 10 and eq. (48)
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evaluated at the parameters ∆x = ∆y = 1 and ys = 3 · ∆y/2.
With these parameters, the 2-D integrals of 27–29 are calculated with
self-adaptive numerical quadratures with an upper truncation limit of
βu=300(rad/mm). The results are plotted in Fig. 2, which indicate
excellent agreement with each other.
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Figure 2. Comparison between the infinite 2-D integral and the
infinite 1-D integral of ILoad,mn.
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4. NUMERICAL RESULTS

To verify the proposed method, computations were made and were
compared with measurements and other available numerical data. The
structure investigated is 2.4-mm strip width on a grounded dielectric
substrate with thickness d = 31 mil and dielectric constant εr = 2.33.

Enforcing the boundary condition on the surface of a perfectly
conducting patch and applying the Galerkin’s procedure, the matrix
equations for the unknown coefficients of the basis functions can be
obtained as [

Zxxmnm′n′ Zxymnm′n′
Zyxmnm′n′ Zyymnm′n′

] [
Ixm′n′
Iym′n′

]
=

[
V x
mn
V y
mn

]
(49)

where Zmnm′n′ denotes the mutual impedance between the (m,n)th
testing function and the (m′, n′)th basis function, and Vmn represents
the excitation voltage at the (m,n)th position of the element due to
the current source.

Then we consider the evaluation of the matrix elements of eq. (49).
The double infinite integral in each submatrix is carried out by the
asymptotic extraction technique described in eq. (15) and (16). The
first integrand of the first integral in eq. (15) and (16) is performed
numerically, after transforming into polar coordinates. The integrand
of the first double integral in eq. (15) and (16) possesses singularities
corresponding to the surface wave poles. In this paper, these poles are
evaluated with the use of a folding technique.

The second integral in eqs. (15) and (16) is computed directly from
the transformed 1-D integral integration algorithm. The direct double
integration of the second integral in eqs. (15) and (16) is the most time
consuming part of the overall computation of the matrix elements.
However, the calculation of this tail integral using the transformed
finite 1-D integral has almost negligible computation time as compared
to those of the first integral in eqs. (15) and (16).

The matrix equation in (49) can not be solved uniquely for the
coefficients of the basis function unless additional equations, obtained
by imposing the boundary conditions at the load terminals, are added.
They relate the coefficients of the load basis functions to the remainder
of the basis functions in terms of the complex load impedances. For
example, the additional equation at the load terminal can be written
as [6, 7] (

1 + jβ∆x
ZL
Z0
− β2∆x2

2

)
I−N−1 − I−N = 0 (50)

By using these additional equations in the matrix (49), one can
solve the current distribution on the conductor.
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The current distribution on the structure obtained from the
above mentioned method is approximated by a sum of complex
exponentials. In order to extract the scattering parameters, we employ
the Matrix Pencil Method [8], and impose the constraint that the
number of exponential terms representing the current distribution on
the transmission line is only three, i.e., incident wave, reflected wave,
and high order terms.

The s-parameters of a right-angled bend discontinuity is computed
by using the above mentioned numerical techniques. Our results are
compared with the measured data as well as those using Ensemble
software. Their respective results are included in Fig. 3. For the
results of the method of this paper and Ensemble data, there is a
good agreement with each other over a wide range of frequencies.
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Figure 3. Comparison between measured and predicted S-parameters
of bend discontinuity.
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To illustrate the overall speed of the computation time, the CPU
time between the proposed method and the conventional spectral
domain method without acceleration to obtain the S-parameters is
compared for a right-angled bend discontinuity at a single frequency
of 5 GHz. In Table 1, the CPU times are given. Using the proposed
method, the chosen upper limit of 50k0 to evaluate the integral
of the matrix elements allows the result to be accurate more than
conventional spectral domain method. However, the conventional
spectral domain approach uses the upper limit of βu reaches 500k0

which has the same accuracy level of the proposed method. As seen
in Table 1, the overall computation time of the proposed method is
44.06 times faster than that of the conventional method. Also the
accuracy of the proposed method is quite comparable with that of the
conventional method.

Table 1. CPU time on a P-III 800 MHz (RAM 1 GB) PC for the
analysis of bend discontinuity (strip width=2.4 mm, εr = 2.2, d =
31 mil, f = 5 GHz).

SDA without Proposed Speed
acceleration(a) Method(b) Improvement

(seconds) (seconds) a
b

3473 78 44.06

5. CONCLUSION

Using the integral transform technique, the infinite double integral in
the evaluation of the asymptotic part of the impedance matrix with
roof-top and half roof-top basis functions was reduced to a finite one-
dimensional integral. This method was applied to the right-angel bend
discontinuity. The computed results were compared with those of
other methods and measured data. It is shown that the proposed
method significantly reduces the computational effort while retaining
its accuracy. These features give room for future application to an
accurate and efficient CAD tool that handles arbitrarily shaped planar
circuits.
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APPENDIX A. SOLUTIONS OF INTEGRAL EQ. (45)

The integral Sh in eq. (45) over the kx plane can be converted into an
integration over the x plane by using Parseval’s theorem

Sh(χ) =
∫ ∞
0

sin(kx∆x
2 ) sin(kx∆x)
k2
x

cos(kxχ)dkx

=
∫ ∞
0

F1(kx) · F2(kx)dkx = π

∫ ∞
−∞

f1(x) · f2(x)dx (A1)

Let us define F1(kx) = sin(kx∆x)/kx and F2(kx) = sin(kx∆x/2) cos(kxχ)/kx.
With aid of the formula 3.741.2 [5], f1(x) can be solved as

f1(x) =
1
2π

∫ ∞
−∞

sin(kx∆x)
kx

cos(kxx)dkx =
{

1
4 , |x| < ∆x
0, otherwise (A2)

Using formula 3.741.3 in [5], f2(x) can be easily obtained as

f2(x) =
1
2π

∫ ∞
−∞

sin(kx∆x
2 )

kx
cos(kxχ) cos(kxx)dkx

=
1
4
rect

(x− χ
∆x

)
+

1
4
rect

(x+ χ

∆x

)
(A3)

Substituting eq. (A2) and eq. (A3) into eq. (A1), it can be represented
analytically as

Sh(χ) =
∫ ∞
0

sin(kx∆x
2 ) sin(kx∆x)
k2
x

cos(kxχ)dkx

=




π
2 (∆x

4 ), |χ| < ∆x
2

π
2 (3

8∆x− 1
4 |χ|), ∆x

2 ≤ |χ| < 3∆x
2

0, otherwise
(A4)
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