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Abstract—In this paper, the problem of scattering from sea surface
with and without oil slicks is investigated taking the finite size of the
illuminated area into account. A model of an inhomogeneous random
rough surface with finite size of the scattering area is considered. To
apply the results for a broad range of the random surface spectrum,
an approach is developed which extends the range of validity beyond
that of small perturbation theory. The general expression obtained
for the scattering cross section takes into account a modulation of the
rough surface by long surface waves. Analytical and numerical studies
of the scattering cross section are provided to investigate the role of
different mechanisms of scattering from various parts of the surface
spectrum, and of diffraction caused by the finite size of the area.
It is shown that the area size may affect the normalized scattering
cross section in the case of the surface with a slick. Possibilities to
explain the features of the suppression of the backscattering by oil slicks
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are discussed. Furthermore, a way to distinguish between different
scattering mechanisms is suggested.
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1. INTRODUCTION

In recent years, the problem of oil slick identification from look-alike
spots of SAR images has increasingly become important [1–5]. That
task is, however, very complex particularly under low-wind conditions.
To solve the problem it is necessary to develop an adequate model of
electromagnetic wave scattering from sea surface with and without oil
films.

During the past several decades, considerable efforts have been
devoted towards the development of a theory for interpreting the
backscattered signal from rough surfaces (see, for example, papers [6–
9] and references given therein). To interpret the scattering from oil
slicks and from the surrounding sea surface, one should use a model
incorporating a broad range of the roughness spectrum. Despite of
many attempts which have been done in this direction, models being
developed by now do not describe the scattering process with sufficient
accuracy. Another feature arising in the scattering problem is the
finite size of the illuminated surface. This aspect should be taken into
account for adequately interpreting oil slicks on SAR images.

The present study has been aimed on the development of a
scattering model for a composite random rough surface with finite size
of its illuminated area. The theoretical approach is based on a solution
describing the scattering process from a random surface with moderate
slopes.

In the general case, the sea surface may be inhomogeneous
because of a modulation of the statistically homogeneous small-
scale components by the large-scale part of the spectrum. This
can correspond to swell or internal waves. Hence, the model to be
developed should include a term being responsible for this effect. In
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the most interesting cases, the inhomogeneous part will be close to
periodic or near-periodic, if it is caused by the joint effects of wind
and gravity waves on capillary waves. In our model, the mean part of
the modulating inhomogeneous part is described by a cosine function.
Because the illuminated surface shows a finite size, ensemble averaging
of the long wave contributions of the random surface is provided,
while the small-scale roughness is averaged under the assumption of
an infinitely wide illuminated area.

Numerical calculations have been carried out with the aid of this
model, in a wide range of the variation of the roughness parameters
which correspond to the surfaces with and without oil slicks. To apply
the obtained results to the real experimental situation, the angular
behaviour of the scattering cross section for different parameters of the
rough surface is studied. The results of the study are discussed from
the point of view of their usefulness to explain experimental data. In
particular, the developed approach allows us to investigate the strong
reduction of the surface roughness which appears when oil films are on
sea surface.

2. THEORY

Consider scattering of a plane horizontally polarised electromagnetic
wave from a perfectly conducting composite rough surface which may
contain random parameters. A one-dimensional case is considered. We
use here the integral-equation-based approach [10]. According to this
approach, the scattered field in the far-field region is described by a
Fredholm integral equation of the second kind. Solving the latter by
using the perturbation technique approximation, one obtains the first
term of the solution for the electric field as

E =
−ikze−i�k �Ra

4π|�Ra|

L∫
−L

dxeiχxx+iχzζ(x). (1)

Here |�Ra| means distance between a point at the surface and the
observation point, χx = |�k|(sin θi − sin θs), χz = |�k|(cos θi +
cos θs), kz = |�k| cos θi where θi and θs are the incidence and scattering
angles, respectively, �k is the wave vector of the incident wave, and ζ(x)
means height roughness as a function of the horizontal coordinate x.

The scattering cross-section is expressed as

σ ∼
L∫
−L

L∫
−L

dxdx′eiχx(x−x
′)+iχz [ζ(x)−ζ(x′)]. (2)
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Note that (1) has been applied by many authors under the
assumption that the size of the illuminated area is much larger than
any peculiar linear scale of a random component of the surface (e.g.,
the correlation length), which is introduced by averaging. (See,
for example, [7, 9, 11]). However, this assumption is not always
satisfied in a realistic experimental situation. Hence we will carry
out the integration over an area whose linear size is 2L, without
averaging in the integrand of (2) with respect to those parameters
of the surface components whose individual scale is large compared to
the electromagnetic wavelength λ. The random nature of the above
component will further be taken into account by ensemble averaging.

Consider the case of a composite two-component surface which is
given by

ζ(x) = A cos(Kx + φ) + ζ1(x). (3)

Here A and K are, respectively, amplitude and wave number of the
periodical surface component, φ is phase of the periodical component,
and ζ1(x) means height of the small-scale roughness. It can be assumed
that Ak � 1 where k means |�k| in the following. The variables A, K, φ,
and ζ1(x) are supposed to be random, since the realistic sea surface
shows statistical properties. Generally, an arbitrary statistic may be
used in (2) and (3). At the first stage of our study, however, we assume
for simplicity that A, K, and φ are deterministic. Then the average
of σ is

〈σ〉h ∼
L∫
−L

L∫
−L

dxdx′R(x, x′)
〈
eiχz [ζ1(x)−ζ1(x′)]

〉
(4)

where R(x, x′) = eiχx(x−x
′)+iχzA[cos(Kx)−cos(Kx′)].

According to [12] and [13], the average calculated for the
assumption of normally distributed variables ζk results in〈

exp

[
i
n∑
k=1

qkζk

]〉
= exp


−1

2

n∑
r,s=1

µrs(ζr, ζs)qrqs


 , (5)

with n = 1, 2, q1,2 = χz, µrs(ζr, ζs) = 〈ζr, ζs〉. Being expressed in
terms of the rms-height of the small-scale roughness, h2 =

〈
ζ2
1

〉
and

the correlation function C(u) = h−2 〈ζ1(x)ζ1(x + u)〉, where u = x−x′,
the function µrs is given by µrs = −h2C(u) at r �= s and by µrs = h2

at r = s. Then one obtains the following expression instead of (4):

〈σ〉h = e−(χzh)2
L∫
−L

L∫
−L

dxdx′R(x, x′)e(χzh)2C(u). (6)
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We restrict ourselves to the case of Gaussian statistics, so that the
correlation function is given by C(u) = exp(−u2/l2) where l means
correlation length.

Expanding the exponential term in the integral of (6) into a Taylor
series, one yields

〈σ〉h =
∞∑
m=0

〈σ〉mh (7)

where

〈σ〉mh = e−(χzh)2(χzh)2m(m!)−1

L∫
−L

L∫
−L

dxdx′R(x, x′)e−u
2m/l2 . (8)

For convenience of evaluating the integral in (8) at m ≥ 1, we use
relative coordinates u = x − x′, v = x + x′. On the other hand,
coordinates x, x′ seem to be more suitable than u, v for m = 0.
Rewriting (8) in the new coordinates, one obtains

〈σ〉mh = e−(χzh)2(χzh)2m(m!)−1
∫∫
S0

dudv T (u, v)e−u
2m/l2 . (9)

Here T (u, v) = eiχxu−i2χzA sin(Ku/2) sin(Kv/2−δ) with δ = KL − φ, S0

means area over which the integration is carried out. This area is
limited by u ≤ v ≤ 4L− u at 0 ≤ u ≤ 2L and by −u ≤ v ≤ 4L + u at
−2L ≤ u ≤ 0.

Now the term in the expression for T , which shows nonlinear
dependence on u, is expanded into a Taylor series. Applying the
binomial series to the obtained expression leads to

T (u, v)=
∞∑
r=0

(−1)r(r!)−1 [χzA sin(Kv/2−δ)]r
r∑
s=0

(−1)sCs
re
iKu

2
(r−2s)+iχxu

(10)
where Cs

r = r!/[s!(r − s)!] are the binomial coefficients. Substituting
(10) into (9) and integrating over v, one obtains

〈σ〉mh = e−(χzh)2(χzh)2m(2m!)−1
∞∑
r=0

(−χzA)r(r!)−1
∞∑
s=0

(−1)sCs
r

3∑
j=1

bjΦj .

(11)
The coefficients bj are given by b1 = Cr

2r2
−2rKL, b2 = (−1)r22−r, b3 =

(−1)r21−r. The integrals Φj in (11) read

Φ1 = 2
2L∫
0

cos
[
Ku

2
(r − 2s) + χxu

]
(1− u/2L)e−u

2m/l2du, (12a)
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Φ2 = 2
r−1∑
t=0

(−1)tCt
2r

2L∫
0

Be(r, t, u) cos
[
Ku

2
(r − 2s)

]
e−u

2m/l2du, (12b)

where r is an even number, Be(r, t, u) = cos[2(r−t)φ] sin[(r−t)(2KL−
Ku)]/(r − t),

Φ3 = 2
r∑
t=0

(−1)tCt
2r+1

2L∫
0

B0(r, t, u) cos
[
Ku

2
(r−2s)

]
e−u

2m/l2du, (12c)

where r is an odd number, B0(r, t, u) = sin[2(r− t+1/2)φ] sin[(r− t+
1/2)(2KL−Ku)]/(r − t + 1/2).

The integration carried out in (12a)–(12c) results in analytical
expressions for Φ1,2,3 which represent a superposition of error functions
[14] of complex argument, D±1 = 2αL − i(β ± γ)/2α, D±2 = i(β ±
γ)/2α, D±3 = 2αL+i(β±γ)/2α where α =

√
m/l, β = K

2 (r−s)χx, γ =
(r−k)K. γ shows nonzero value only for Φ3. An additional term, which
contains no error function appears for Φ2. These expressions are very
cumbersome and will be omitted here since a simplified version of the
obtained expressions will only be used for further considerations.

For a realistic sea surface illuminated by electromagnetic waves in
the millimeter wave range, the conditions

L/l � 1, (13a)
K/χx � 1, (13b)
χxKl2 � 1 (13c)

usually hold. In particular, these conditions are satisfied if the
correlation length is in the range of millimeters, the spatial wavelength
in the range of meters, and the linear size of the illuminated area
measures meters or tens of meters. Note that the inequality (13b) is
satisfied at least if θi or θs is not very close to zero.

Using the above inequalities, first consider the zero-term in the
sum over m given in (7). It can be expressed as

〈σ〉0h = E0E
∗
0 (14)

where the asterisk denotes the complex conjugate. In (14), E0 is the
normalized electric field corresponding to the case that ζ1 = 0 (see (1)
and (3)). It is given by

E0 =
L∫
−L

dxe−iχxx−iχzA cos(Kx+φ). (15)
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In the case that there is no small roughness (kh = 0), the terms with
m ≥ 1 take zero value, so that 〈σ〉h is given by (14), (15). This case
corresponds to scattering from a periodic surface of finite size. To
convert (15) into a series, the Taylor series expansion and the binomial
series are again invoked. The result reads

E0 =
1
K

eiχxφ/K
∞∑
r=0

(−1)r

r!

(
iχzA

2

)r r∑
s=0

Cs
rU(r, s)[i(r − 2s)− iχx/K]−1

(16)
with U(r, s)=ei(KL+φ)(r−2s)−i(KL+φ)χx/K−e−i(KL−φ)(r−2s)+i(KL−φ)χx/K.
If condition (13b) is satisfied, one can simplify (16). Carrying out some
algebraic manipulations, one obtains instead of (14) and (16)

〈σ〉0h ≈
(

2
χx

)2

sin2[χxL− χzA sin(KL) sinφ]. (17)

The latter expression defines the cross section for a periodic surface of
finite size provided that (13b) is satisfied.

Now we return to the terms with m �= 0. Imposing (13a) leads to
the possibility to use the asymptotic value of the error function [14]
and then to omit the terms of order e−z

2
and z−1 where z = L/l

in the expressions obtained by integrating (12a)–(12c) over u. If
condition (13b) is satisfied, the result of the latter simplification can
approximately be transformed into a relation in which the series over
s and t can be split. The series over s can then be summarized. The
result shows a form (e−x − 1)r where x = χxχzAKl2/4m, provided
that kl ∼ 1 and AK < 1. The condition (13c) allows us to use the
first two terms of the Taylor series for the latter exponent. This leads
to the very important advantage that the powers of χxχzAK/4α2 ∼ 1
where α =

√
m/l appears in the series over r instead of the powers of

χzA/2 which can be much larger than unity.
As a result, one obtains instead of (11) and (12)

〈σ〉mh ≈ 2
√
πLe−(χzh)2(χzh)2m(αm!)−1e−χ

2
x/4α

2
3∑
j=1

Wj (18)

where

W1 = J0(i2G), (19a)

W2 =
1

KL

∞∑
r=0

(−1)r

(2r)!
G2r

r−1∑
t=0

(−1)t

r − t
Ct

2rD
e(r, t), (19b)

W3 =
1

KL

∞∑
r=0

(−1)r+1

(2r + 1)!
G2r+1

r∑
t=0

(−1)t

r − t + 1/2
Ct

2r+1D
0(r, t). (19c)
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Here J0(x) is the Bessel function of zeroth order, G = χxχzAK/4α2

with α =
√
m/l,

De(r, t) = sin[2(r − t)KL] cos[2(r − t)φ]

·
{
ch

[
(r − t)χxK

2α2

]
− i erf(iχx/2α)sh

[
(r − t)χxK

2α2

]}
,

D0(r, t) = sin[2(r − t + 1/2)KL] cos[2(r − t + 1/2)φ]

·
{
ch

[
(r−t+1/2)χxK

2α2

]
−i erf(iχx/2α)sh

[
(r−t+1/2)χxK

2α2

]}

where erf(x) means the error function (see [14]).
As can be seen from the above consideration, the integral

representation of the cross section given by (6) is converted into a
series one given by (7), (17)–(19). Note that the series over m and t in
(7), (19b), and (19c) shows fast convergence for the most part of the
range of variation of the parameters corresponding to a realistic sea
surface, at least if electromagnetic waves of millimeter wave range are
applied. Although the solution given by (7), (17)–(19) looks more
cumbersome than the integral representation of the solution given
by (6), the structure of the obtained series is more convenient for
analytical and numerical studies of the effect of parameters of both
the surface and incident wave on the scattering cross section.

3. ANALYSIS

Consider the case of backscattering which is of most practical
importance for remote sensing applications. In this case θs = −θi,
so that χx = 2k sin θi, χz = 2k cos θi. Firstly suppose that there is
no long wave (periodic component) in the random surface description,
i.e., A = 0, G = 0, and that the linear size of the scattering area is so
large that KL � 1. Then the cross section normalized by the factor
L/k is given by

〈σ〉h = 2kle−(χzh)2
∞∑
m=1

√
π

m

(χzh)2m

m!
e−(χxl)2/4m. (20)

The above result corresponds to the scattering cross section given in
[9, 15]. It is known as the regular full-wave scattering cross section.
Provided that all terms beyond the first one are small, relation (20)
gives first-order perturbation results.

Now assume that the long periodic spatial structure has a small
amplitude, i.e., AK � 1. If, moreover, the condition

G = χxχzl
2AK/4m� 1 (21)
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is satisfied, the Bessel function in term W1 given by (19a) can be
estimated as

J0(2iG) =
∞∑
t=0

1
(t!)2

G2t ≈ 1. (22)

The condition (21) introduces a ratio between the parameters of long
waves and those of small-scale roughness, at which 〈σ〉h weakly depends
on the amplitude of the long waves. Thus, if the parameter kl is
increased, AK should sufficiently be decreased in order to satisfy (21).

Consider (19a)–(19c). Contrary to W1 ≈ 1, W2 and W3 contain
parameters of both periodic and small-scale components. Thus the
finite area effect depends on the small-scale roughness only due to
these terms. It can be seen from (19b) and (19c), that the series over
r contains the powers of G, starting either from the first one in the
general case or from the second one in the case that φ = 0. This means
that the contribution of W2 and W3 is insignificant at least if (21) holds
and KL > 1. In this case, one can use only the first terms of the series
representation for W2 and W3. Then W2 = 0 and W3 = PGsinc(KL),
where P = cosφ[ch(χxK

4α2 )− i erf( iχx2α )sh(χxK
4α2 )], sincx = sinx/x. As a

result, we obtain the following formula for the normalized cross section:

〈σ〉h = 〈σ〉0h +
∞∑
m=1

〈σ〉mh (23)

where 〈σ〉0h is given by (17) multiplied by k/L,

〈σ〉mh = 2kle−(χzh)2
√

π

m

(χzh)2m

m!
e−(χzl)2/4m[1 + 2PGsinc(KL)].

Consider the structure of the simplified expression for the
scattering cross section (23). As mentioned above, the first term on
the right-hand side of (23) only describes the diffraction effect on the
periodical finite-size structure and does not depend on the random
parameters of the surface. On the other hand, the second term in (23)
is responsible for scattering by the randomly rough surface. It is seen
that 〈σ〉mh consists of two terms. The first of them is not connected
with a long spatial wave. The second one contains the parameters of
both the long spatial wave and the small-scale roughness. This term
is proportional to G and is hence small compared to the first one. As
can be seen, increasing the scattering area results in decreasing this
term. Thus the effect of the long wave amplitude variation on the
cross section is most pronounced for small sizes of the scattering area.
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In the general case, if (21) is not satisfied, one should use the
following expression for 〈σ〉mh in (23)

〈σ〉mh = 2kle−(χzh)2
√

π

m

(χzh)2m

m!
e−(χxl)2/4m

3∑
j=1

Wj .

If G ∼ 1, the terms W2 and W3 are still vanishingly small at KL� 1
and hence responsible for the finite area effect only if KL is small
enough, as is the zero-term which is proportional to (17). In the
case of KL being small enough, G(KL)−1 can be ∼ 1 even though
G� 1, so that one cannot consider W2 and W3 to be negligibly small in
comparison with W1 if just condition (21) is satisfied. If the inequality

(kl)2AK sin 2θi/(2mKL)� 1 (24)

is not satisfied, one must take into account the contributions of
the terms W2 and W3. This condition is necessary to provide the
dependence of the effect of the parameters of small-scale roughness on
the amplitude A, which does not occur in the framework of the above
used approximations. Yet another effect which occurs if one takes into
account these terms is the dependence of 〈σ〉h on the phase of the
periodic surface (see (3), (19b), and (19c)).

Consider the first term W1. Regarding the angular behaviour, the
function G reaches its maximum at θi = π/4. The larger kl and AK,
the more pronounced is this maximum, and thus the stronger is the
effect of G on 〈σ〉mh . Thus if (21) does not hold, one should expect
that a maximum of 〈σ〉h appears except for the case that the zeroth
term 〈σ〉0h makes the dominant contribution to the cross section over
the total range of angle variation.

Since J0(i2G) depends on m, it plays the role of weighting
coefficients in the sum over m. Increasing m results in decreasing
J0(i2G). Thus the contribution of the terms in the sum over m varies
in favour of those with smaller m, as |θi − π/4| decreases. This occurs
if G ∼ 1 or if G > 1, i.e., when the condition

(kl)2AK sin 2θi/(2m) ∼ 1 (25)

is satisfied. One cannot split the effects of the periodic (long wave)
and of the small-scale components if (25) is valid. The effect of the
finite area becomes weaker in the middle-angle region. This is due to
the decreasing contribution of 〈σ〉0h to (7) and (23) which is caused by
an increasing J0 with G. As follows from (25), the amplitude A can
exert a weak effect on the scattering at kl � 1, even though AK ∼ 1.
This result holds for arbitrary θi.
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Thus we have carried out a qualitative analysis of the obtained
series-type solution in the backscattering case. As a result, we
have obtained the conditions at which the finite-area effect is more
pronounced, and those for which one can expect that the effect of one
or the other parameter should be insignificant. Now let us validate the
developed theory by comparing it to numerical results.

4. SIMULATION RESULTS

We will first consider how the variations of random parameters which
are related to the different ranges of the roughness spectrum, influence
the intensity of the scattered electromagnetic waves. Consider the case
that the large-scale roughness is deterministic. Then the model of the
sea surface consists of a cosine wave with wavelength Λ which is much
larger than the wavelength of the electromagnetic wave λ, superposed
to a small-scale roughness whose rms-height h and correlation length
l satisfy the conditions Kh � 1 and Kl � 1. Note that according to
[16], the parameters of the random surface and the surface length L, at
which the averaging may be used, must satisfy the conditions 40h ≥ L
and 200l ≥ L.

The formulae (7), (17)–(19) have been applied for calculations, in
which the cross section has been normalized by the term 2

√
πL/χz.

In Figs. 1–4, we show the angular behaviour of the radar scattering
cross section for different parameters of the random surface. The
backscattered signals are studied because this case usually represents
the practical situation.

Fig. 1 shows plots for different rms-heights while the correlation
length is kept constant, for the case that the size of the illuminated
surface is almost the same as the spatial wavelength of the long waves.
The smaller the h-value, the narrower is the roughness spectrum. This
narrowing leads to an increasing contribution of diffraction from the
periodically finite surface to the scattering process. As is shown in Fig.
1(a), which corresponds to the smaller kh-value, a diffraction effect
occurs in the angle range of 45 to 80 degrees. An increase of the
rms-height results in shortening this angle range, at which diffraction
is dominant (see Figs. 1(a)–(c)). The diffraction effect dependence
on the size of the illuminated area can be seen from comparing the
results of Figs. 1 and 2. Figure 2 shows the angular dependence of
the cross section for the same surface parameters as in Fig. 1 except
the illuminated area size, which is almost ten times as large as the
spatial wavelength of the long waves. One can see that increasing the
scattering area leads to decreasing the angle range, which corresponds
to the dominant contribution of diffraction. In the considered case,
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(a)

(b) (c)

Figure 1. Angular behaviour of the scattering cross section for
different rms-heights and constant value of the correlation length
l = 2.7/k. The illuminated area is small: L = 6/K; the amplitude
of the large surface wave is A = 0.3/K; the phase of this wave is
φ = π/20; the relation between the wave numbers of the large surface
and electromagnetic waves is K/k = 3 · 10−3; a) h = 0.088/k, b)
h = 0.2/k, c) h = 0.6/k.
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(a)

(b) (c)

Figure 2. Angular behaviour of the scattering cross section for
different rms-heights and constant value of the correlation length
l = 2.7/k. The illuminated area is moderate: L = 60/K; the amplitude
of the large surface wave is A = 0.3/K; the phase of this wave is
φ = π/20; the relation between the wave numbers of the large surface
and electromagnetic waves is K/k = 3 · 10−3; a) h = 0.088/k, b)
h = 0.2/k, c) h = 0.6/k.
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(a) (b)

Figure 3. Angular behaviour of the scattering cross section for
different correlation lengths l and constant value of the rms-height
h = 0.02/k. The illuminated area is small: L = 6/K; the amplitude
of the large surface wave is A = 0.3/K; the phase of this wave is
φ = π/20; the relation between the wave numbers of the large surface
and electromagnetic waves is K/k = 3 · 10−3; a) l = 1/k, b) l = 1.6/k.

(a) (b)

Figure 4. Angular behaviour of the scattering cross section for
different correlation lengths l and constant value of the rms-height
h = 0.02/k. The illuminated area is moderate: L = 60/K; the
amplitude of the large surface wave is A = 0.3/K; the phase of this
wave is φ = π/20; the relation between the wave numbers of the large
surface and electromagnetic waves is K/k = 3 · 10−3; a) l = 1/k, b)
l = 1.6/k.
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the factor (kl)2AK/(2m) at m = 1 takes the value 1.09, so that (25)
is satisfied, and hence the long wave amplitude affects the scattering
from small-scale roughness substantially.

Now consider how the variation of the correlation length affects
the scattering process. If the value of the rms-height is sufficiently
small like that one in the curves of Figs. 3 and 4, then the effect
of the diffraction strongly manifests itself in the scattering process.
Since an increase of the value of the correlation length at constant
rms-height corresponds to narrowing the roughness spectrum of the
small-scale roughness, one should expect an increasing contribution of
the diffraction effect. Note that the presence of oil films on sea surface
can lead to similar phenomena. As can be seen from Figs. 3 and 4, a
decreasing influence of the small-scale roughness or, correspondingly,
an increasing correlation length leads to a redistribution of the
diffraction part in the angular behaviour of the scattered intensity
(compare Figs. 3(a), 3(b), 4(a), and 4(b)). The increase of the
correlation length results in an insignificant decrease of the diffraction
effect at the middle-angle range. The opposite trend is observed at
large angles. In this case, an increase of kl results in a substantial
increase of the contribution of the diffraction effect. One can observe
a larger value of the cross section for smaller kl, which is caused
by increasing scattering from the small-scale roughness due to an
increased slope. A comparison of the curves with the same roughness
parameters but with two different lengths of the scattering surface (see
Figs. 3 and 4) indicates that an increase of the size of the scattering area
causes the diffraction effect to decrease, so that the scattering from the
small-scale roughness is prevalent for the most part of the angle range.
In the considered case, (25) is not yet satisfied, but (21) is already not
satisfied. Thus, the long wave amplitude exerts no substantial effect on
the scattering from the small-scale roughness. The effect of the finite
size of the illuminated area manifests itself only through the diffraction
term 〈σ〉0h.

To study the influence of the different scattering mechanisms
on the scattering cross section, its angular behaviour has also been
computed for different rms-heights and correlation lengths which have
been changed simultaneously in such a manner that the slope angle
of the small-scale roughness has been kept constant. Fig. 5(a) depicts
the scattering cross section when h and l have so small values that
diffraction becomes the major scattering mechanism over the whole
range of angle variation. In this case, one can observe that the level
of the scattered intensity is higher in the case of smaller KL. The
influence of both KL and AK for larger values of h and l appears
to be negligible for most part of the angle range, as is shown in Fig.
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(a)

(b) (c)

Figure 5. Role of an illuminated area and an amplitude of the long
surface wave. Scattering cross section as a function of the incidence
angle for constant slope angle of the small-scale roughness. The phase
of the large surface wave is π/4; the relation between the wave numbers
of the surface and electromagnetic waves is 3 · 10−3.
a) The rms height is 0.017/k the correlation length is 0.07/k;
b) the rms height is 0.106/k, the correlation length is 0.45/k;
c) the rms height is 0.331/k, the correlation length is 1.41/k.
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5(b). This result can be explained by noting that scattering from
the small-scale roughness plays a major role. In line with (21) and
(25), the long wave amplitude does not affect the above scattering
mechanism in the considered case. A further increase of h and l will
raise the influence of the large-scale spatial wave on the scattering as
is demonstrated in Fig. 5(c). It can be observed that an increase of the
large wave amplitude results in an increase of the scattering level due
to improving the satisfying condition (25). The variation of the area
size just weakly affects the scattering in this case.

As next step of our study, we assume that the amplitude of the
large wave A is a random value, hence we apply ensemble averaging.
The results obtained above for the case without averaging over A can
be used to estimate the range of variation of the surface parameters,
for which the averaging should be carried out. In particular, it can be
seen from (25) that the larger AK and kl, the larger is the expected
difference between the averaged and the non-averaged cross sections.
This effect should be most pronounced at intermediate angles. On the
other hand, if (25) is satisfied and KL is large enough, an averaging
effect is not expected for those parameters, for which the terms with
m ≥ 1 constitute the dominant contribution to (7) and (23). The other
expected effect of averaging is caused by the appearance of term A in
the diffraction term (17). In this case, the oscillations of 〈σ〉h, which
appear for the non-averaged cross section should be damped. In the
frame of the above consideration, this effect should be pronounced at
small and large angles.

Now generate a series of normally distributed variables. It is given
by

R′i =
√

2 ln(1/Vi) cos(2πVi−1), (26a)

R′′i =
√

2 ln(1/Vi) sin(2πVi−1) (26b)

with Vi+1 = FRAC(ktVi) where FRAC(x) means the fractional part
of the number, kt = 8t±3, t is an odd integer, i = 1, 2, . . .. The initial
value V0 is an arbitrary number satisfying the inequality 0 < V0 < 1.
Also R2i−1 = R′i, R2i = R′′i . As a result, a conjugate pair of numbers
with zero mean value, R = 0, and rms-deviation

〈
a2

〉
= 1 is obtained

for each i. To obtain a series with R �= 0,
〈
a2

〉
�= 1, the building law

ri+1 = R + Ri+1

〈
a2

〉
(27)

is used. As soon as the numbers ri are determined, the calculation of
the scattering cross section can be carried out by using (7), (17), (18),
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(a) (b)

Figure 6. Role of the scattering area size for two-scale rough surface
with different parameters of small-scale roughness. The parameters of
the large surface wave are: A = 0.3/K, φ = π/20, K/k = 3 · 10−3; a)
h = 0.02/k, l = 0.12/k; b) h = 0.4/k, l = 1.6/k.

(19), and supposing that A = ri. Finally, we average the obtained
results. The variable 〈σ〉 = 〈〈σ〉h〉A is referred to as the scattering
cross section, since the cross sections obtained without averaging with
respect to the amplitudes of the long waves are not considered any
longer. The normalization factor 2

√
πL/χz is used as in the case that

no averaging was applied.
Consider now the two-scale rough surface with small roughness

as has been described above, and with superposed large roughness. A
presentation of the surface by cosine waves with random amplitudes is a
mean to take the surface inhomogeneity into account. Here we provide
ensemble averaging for the large-scale component supposing that the
wave vector and phase are deterministic. For all following results, the
averaging is carried out for N = 60 curves with a rms-deviation equal
to 0.15.

Fig. 6 presents the results for small (a) and moderate (b) values
of the small-scale roughness parameters. The curves 1, 2, 3 correspond
to scattering surfaces with lengths 6/K, 10/K, 60/K, respectively.
The shorter the length of the scattering surface, the stronger is the
backscattered signal which occurs mainly because of the influence of
diffraction. In line with this, the scattering for a length L = 6/K (curve
1) is stronger than for L = 60/K (curve 3) as can be seen from Fig.
6(a). If the scattering due to the small-scale roughness is dominant, the
scattering area has no effect on the values of the radar cross section,
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Figure 7. Role of the scattering area size for two-scale rough surface
with constant correlation length which has been set equal to 2.7/k and
different rms-height which is equal to 0.02/k. The parameters of the
large surface wave are: A = 0.3/K, φ = π/20, K/k = 3 · 10−3.

as one can see in Fig. 6(b) (all three curves merge together). The
latter corresponds to the case that the term 〈σ〉0h can be omitted, as
well as the terms W2 and W3. (Note that in Fig. 6 and further A
means a mean value of the long wave amplitude). Thus the effect of
the scattering area size can manifest itself for the surface covered by
an oil film.

The results in Fig. 7 belong to a small-scale roughness with the
same rms-height as in Fig. 6(a), and sufficiently large correlation
length. Again as in Fig. 1, the contribution to the scattered signal
caused by diffraction is most significant at large angles, because in this
case the effect of the area size is most pronounced. However, if the
small-scale roughness parameters are sufficiently small, the influence
of the long wave will be extended over the whole angle range. The
decrease of the effect of KL on the cross section at angles of 15 to 40
degrees is caused by the increasing contribution of term W1 given by
(19a) to the whole cross section which occurs due to an increasing G
(see (21)).

The results in Fig. 8 show the scattering for several values of
the rms-height when the correlation length is equal to 2.7/k. The
linear size of the scattering surface is equal to L = 10/K in Fig. 8(a)
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(a) (b)

Figure 8. Effect of the rms-height on the scattering cross section
for different size of the scattering area (correlation length l = 2.7/k).
The parameters of the large surface wave are: A = 0.3/K, φ =
π/20, K/k = 3 · 10−3; a) L = 10/K; b) L = 60/K.

(a) (b)

Figure 9. Effect of the correlation length on the scattering cross
section for different size of the scattering area (rms-height h = 0.02/k).
The parameters of the large surface wave are: A = 0.3/K, φ =
π/20, K/k = 3 · 10−3; a) K = 10/L; b) L = 60/L.
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and to 60/K in Fig. 8(b). An increase of the scattered signal with
the rms-height increased is not observed at angles close to 80 degrees,
provided that kh is small enough, what is due to the dominant effect
of diffraction. In the other cases, the effect of kh on the cross section
is usually quite pronounced. An increase of the scattering area leads
to a substantial decrease of the cross section if the angle is larger than
60 degrees.

Lastly we consider the case that the correlation length is varied
while the rms-height is constant at a small value which may correspond
to the surface with an oil slick. Then the small-scale roughness
spectrum is sufficiently narrow and the spectral strength in the
angular range close to horizontal incidence is low. This phenomenon
causes reduced backscattering from small-scale roughness. Hence the
scattering cross section in the angular range of 50 to 90 degrees mainly
depends on the diffraction effect. The shorter the linear size of the
scattering area, the stronger is the contribution of diffraction and the
larger is the cross section value, as is shown in Figs. 9(a) and 9(b).

5. CONCLUSIONS

To summarise, let us discuss the main features of this study from
the point of view of oil slick determination by using SAR images.
According to [4], oil films on sea lead to a suppression of backscattering
over all ranges of the surface wave spectrum. However, to explain the
backscattering reduction due to oil films it is often suggested that only
a Bragg resonance process (i.e., short surface waves) is responsible for
the scattering of electromagnetic waves, while non-linear wave-wave
interaction transfers energy from long waves to an energy sink in the
short-wave region.

As can be seen from the above study, long surface waves can
directly suppress a backscattered signal from oil films. However, this
decrease of the scattering which is observed for moderate values of the
parameters of small-scale roughness, is sufficiently low if the small-scale
roughness shows small values.

In general, the scattering signal consists of three parts: the
diffraction caused by the finite size of the scattering area, the scattering
from small-scale roughness, and the scattering from large-scale surface
waves. All these factors can affect the value of the scattering cross
section because of various relations existing between them. If the
parameters of the small-scale roughness are sufficiently small, the
diffraction plays a major role in backscattering. For such parameters of
small-scale roughness, the amplitude of the large-scale roughness does
not affect the scattering intensity as has been shown. This phenomenon
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leads to a level of the scattering cross section which depends on area
size. The larger the size, the lower is the value of scattering. Hence
in practice, SAR images of oil slicks obtained for a smaller illuminated
area can show a higher level of response compared to those from a
larger area even if the roughness shows the same values. As a result, the
contrast between two backscattered signals, which correspond to the
surfaces with and without oil slicks, while the large wave parameters
are kept constant, may also depend on the area size.

On the other hand, it is also possible to observe the opposite
phenomenon that the level of response is decreased as a result of a
decrease in the amplitude of the long surface wave. In spite of the fact
that this feature is observed for essentially larger parameters of small-
scale roughness, the difference in contrast between two backscattered
signals, which correspond to two different amplitudes of long waves, can
be the same as the contrast for the case that the small-scale roughness
parameters are smoothed due to the slick effect. In this case, one
should expect just a very weak dependence on the scattering area size.

Hence a possible method for distinguishing between these
mechanisms of the lowering of the level response is to study the
influence of a finite size of the scattering area. Indeed, in order to
determine what part of the roughness spectrum (short or long waves)
is responsible for the decrease in scattering, one should compare the
level of response from oil slicks for different size of the illuminated area.
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