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Abstract—We generalize to scalar pulses with finite duration a
previous work [1] in which a new approach to diffraction at plane
apertures is developed for scalar harmonic waves. A particular
attention is given to rectangular pulse modulated signals for which an
exact solution to the diffraction problem is obtained. As an example,
the diffraction of a truncated harmonic pulse is investigated and the
numerical problems to be solved are discussed with an important
simplification when one is only interested in the diffraction pattern
far from the aperture. More works are needed for apertures with no
simple geometrical form.
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1. INTRODUCTION

We generalize to scalar pulses, solutions of the wave equation, an
approach to diffraction by plane apertures previously developed [1] for
harmonic scalar waves, solutions of the Helmholtz equation. We first
present, for fields depending arbitrarily on time, the generalization of
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the integral formulation used [1] to discuss harmonic field scattering
with boundary data given on some surface S, supposed here to be a
perfectly conducting plane. We still note x and x′ the action and
source points, Σ and Σ′ the surface S of the action and source points
respectively.

2. SCATTERING INTEGRAL EQUATIONS: A
DIFFERENT APPROACH

We consider the scattering of scalar pulses on a perfectly conducting
plane so that the total field ψ(x, t) incident plus reflected is with
x = (x, y, z)

ψ(x, t) = ψi(x, t) + ψr(x, t) (1)

Then ψ and the Green’s functions gD,N (x, t;x′, t′) in the integral
equations, obtained from the wave equation Dψ(x, t) = 0 in which
D is the Dalembertian operator, are supposed to satisfy on Σ(z = 0)
the Dirichlet or Neumann boundary conditions

[ψ(x, t)]Σ = 0 , [gD(x, t;x′, t′)]Σ = 0 (2a)
[∂zψ(x, t)]Σ = 0 , [∂zgN (x, t;x′, t′)]Σ = 0 (2b)

And for fields null at infinity, the integral equations for harmonic fields
[1] are replaced by:

ψ(x, t) =
∫ ∞
−∞

dt′
∫ ∞
−∞

dx′
∫ ∞
−∞

dy′[gD(x, t;x′, t′)∂z′ψ(x′, t′)]z′=0 (3a)

ψ(x, t) = −
∫ ∞
−∞

dt′
∫ ∞
−∞

dx′
∫ ∞
−∞

dy′[ψ(x′, t′)∂z′gN (x, t;x′, t′)]z′=0 (3b)

It is a simple exercise to check that the solution (3a) (resp. (3b)) of the
wave equation satisfies the boundary condition (2a) (resp. (2b)). Let
g(x, t;x′, t′) be the free space Green’s function of the wave equation in
the conventional formalism, g is the Dirac distribution

g(x, t;x′, t′) = R−1δ[R−c(t− t′)] , R2 = (x−x′)2 +(y−y′)2 +(z−z′)2
(4)

while here we define g as the inverse Laplace transform with respect
to the variable s = ik of the free space Green’s function g(x,x′; k) of
the Helmholtz equation (Eq. (12) of 11])

g(x,x′; k)=(i/8π2)
∫∫ ∞
−∞

dβdγk−1
z exp[iβ(x−x′)+iγ(y−y′)+ikz|z−z′|),

k2
z = k2 − β2 − γ2

(5)
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so that with sz = (s2 + β2 + γ2)1/2

g(x, t;x′, t′) = (ic/16π3)
∫
Br

ds

∫∫ ∞
−∞

dβdγs−1
z Φ(β, γ, s) exp(sz|z − z′|)

(6)

Φ(β, γ, s) = exp[s(ct− ct′) + iβ(x− x′) + iγ(y − y′)] (6a)

The Bromwich contour Br in the integral (6) is made of a line L parallel
to the imaginary axis with all the singularities of the integrand on its
left. Then, the Green’s functions gD, gN are obtained from g by the
method of images with ξ = (x, y,−z) being the Σ-mirrored point of x

gD(x, t;x′, t′) = g(x, t;x′, t′)− g(ξ, t;x′, t′),
gN (x, t;x′, t′) = g(x, t;x′, t′) + g(ξ, t;x′, t′), (7)

(the conventional formalism uses the image point ξ′ of x′ with respect
to Σ′).

We illustrate this integral formalism on the simple case of a
truncated plane wave ψi incident from the region z < 0 on the perfectly
conducting plane z = 0:

ψi(z, t) = f(t− z/c)[U(t− z/c)− U(t− τ − z/c)] (8)

in which U is the unit step function, f an arbitrary function with
partial derivatives while τ is the duration of the incident pulse.
According to the Descartes-Snell law, the reflected pulse ψr(z, t) is
deduced from (8) by changing z into −z so that the total field is on
the Σ plane

[ψ(z, t)]Σ = 2f(ct)[U(ct)− U(ct− cτ)] (9)

ψ(z, t) satisfies the Newmann boundary condition (2b), so this pulse
must be a solution of the integral equation (3b) and we need [∂z′gN ]Σ.
Now, we get from (6) and (7)

gN (x, t;x′, t′) = (−ic/16π3)
∫
Br

ds

∫∫ ∞
−∞

dβdγs−1
z Φ(β, γ, s)

·
{
exp(sz|z − z′|) + exp(sz|z + z′|)

}
(10)

and using the relations

[z − z′]z′=0 = −z , [∂z′ |z − z′|]z′=0 = 1 z < 0
[z + z′]z′=0 = z , [∂z′ |z + z′|]z′=0 = 1 z > 0 (11)
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we get

[∂z′gN (x, t;x′, t′)]z′=0 = (ic/8π3)
∫
Br

ds

∫∫ ∞
−∞

dβdγΦ(β, γ, s)cosh(szz)

(12)
Substituting (9) (written for the point source t′) and (12) into (3b)
and taking into account (6a) give

ψ(z, t) = (c/4iπ3)
∫
Br

ds exp(sct)

·
∫∫ ∞
−∞

dβdγ exp(iβx + iγy)cosh(szz)F (β, γ, s) (13)

in which F (β, γ, s) is the integral

F (β, γ, s) =
∫∫ ∞
−∞

dx′dy′ exp(−iβx′ − iγy′)
∫ τ

0
dt′f(ct′) exp(−sct′)

= 4π2δ(β)δ(γ)
∫ τ

0
dt′f(ct′) exp(−sct′) (13a)

so that changing the order of integration, the integral equation (13)
becomes

ψ(z, t) = (c/iπ)
∫ τ

0
dt′f(ct′)

∫
Br

ds exp(sct− sct′)

·
∫∫ ∞
−∞

dβdγδ(β)δ(γ) exp(iβx + iγy)cosh(szz)

=
∫ τ

0
dt′f(ct′)[B+(z, t′) + B(z, t′)] (14)

with the functions B± defined by the relations

B±(z, t) = (c/2iπ)
∫
Br

ds exp[sct− sc(t′ ± z/c)]

= cL−1[−s(ct′ ± z)] (14a)

in which L−1 is the inverse Laplace operator and using the well known
Laplace transform formula L−1{exp(−as)} = δ(t − a) for a > 0 that
we write δ(t− a)U(a) we get

B±(z, t′) = cδ(ct− ct′ ± z′)U(ct′ ± z) (15)

Substituting (15) into (14) gives

ψ(z, t) = c

∫ τ

0
dt′f(ct′)[U(ct′−z)δ(ct−ct′+z)+U(ct′+z)δ(ct−ct′−z)]

(16)
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Now the relation
∫ b
a dxf(x)δ(x−x0) = f(x0) requires x0 in the interval

[a, b] ∫ b

a
dxf(x)δ(x− x0) = f(x0)[U(x0 − a)− U(x0 − b)] (17)

So, taking into account (17), the integral (16) becomes

ψ(z, t) = f(ct− z)U(t)[U(ct− z)− U(ct− cτ − z)]
+ f(ct + z)[U(ct + z)− U(ct− cτ + z)]

= ψi(z, t) + ψr(z, t) (18)

which is the expected result. In this relation, the step function U(t)
implies that (18) makes sense only for t > 0 in agreement with the fact
that the pulse (8) reaches the plane z = 0 at the time t = 0 so that
no reflected field can exist before this time. One has a similar result
for a pulse (8) impinging with an arbitrary angle and incidently, this
proves the validity of the Descartes-Snell law for reflection of pulses on
perfectly conducting planes.

3. PULSE DIFFRACTION AT PLANE APERTURES

We now show how this integral formulation can be used to deal with
diffraction of pulses at a hole in a perfectly conducting plane assuming
that a hole with a finite area in an infinite plane does not change the
Green’s functions. We suppose that ψi impinges from the region z < 0
on the plane z = 0 punctured by the aperture A. The total field is
given for z < 0 by

ψ(x, t) = ψi(x, t)+ψs(x, t) , ψs(x, t) = ψr(x, t)+ψd(x, t) z < 0 (19)

in which ψs, ψr, ψd, are the scattered, reflected and diffracted fields
while ψ+(x, t) is the field in the region z > 0. We impose on the plane
z = 0 the boundary conditions

[∂zψ(x, t)]Σ−A = 0 (20a)
[ψ(x, t)− ψ+(x, t)]A = 0 (20b)

The Neumann condition (20a) outside the aperture is also valid for
ψ+ while (20b) implies the continuity of the total field through the
aperture. So, we use the integral equation (3b) that we write in the
illuminated region z < 0

ψ(x, t) = ψΣ(x, t) + ψA(x, t) , z < 0 (21)
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ψΣ(x, t) = ψi(x, t) + ψr(x, t)

= −
∫ ∞
−∞

dt′
∫ ∞
−∞

dx′
∫ ∞
−∞

dy′[ψ(x′, t′)∂z′gN (x, t;x′, t′)]z′=0 (21a)

ψA(x, t) = −
∫ ∞
−∞

dt′
∫
A
dx′dy′[ψ+(x′, t′)−ψi(x′, t′)−ψr(x′, t′)]z′=0

· [∂z′gN (x, t;x′, t′)]z′=0 (21b)

[ψ(x′, t′)]z′=0 in (21a) is the total field on the perfectly conducting
plane in absence of aperture.

Let us prove that the boundary conditions (20a,b) are fulfilled by
(21). First, according to (6a) and (12)

{
[∂z′gN (x, t;x′, t′)]z′=0

}
z=0 = (ic/8π3)

∫
Br

ds

∫∫ ∞
−∞

dβdγΦ(β, γ, s)

= −δ(t− t′)δ(x− x′)δ(y − y′) (22a)

while we still get from (12)
{
∂z[∂z′gN (x, t;x′, t′)]z′=0

}
z=0 = 0 (22b)

So [∂zψ(x, t)]z=0 = 0 according to (21a,b) and (22b) which implies the
condition (20a). Now, substituting (22a) into (21a) gives

[ψΣ(x, t)]z=0 = [ψi(x, t) + ψr(x, t)]z=0 (23a)

while substituting (22a) into (21b) and using the 2D-generalization of
(17), we get

[ψ(x, t)]z=0 = [ψ+(x, t)− ψi(x, t)− ψr(x, t)]z=0U(x, y ∈ A) (23b)

nonnull only in the aperture A. So, from (21) and (23a,b):

[ψ(x, t)]z=0 = [ψi(x, t) + ψr(x, t)]z=0

+ [ψ+(x, t)− ψi(x, t)− ψr(x, t)]z=0U(x, y ∈ A) (24)

which is the continuity condition (20b) through the aperture. Then,
the solution of the wave equation supplied by the integral equation
(21) satisfies the boundary conditions (20a,b).

Now the Babinet principle applied to (21b) gives for the total field
ψ+(x, t) in the shadow region z > 0 the integral equation

ψ+(x, t) =
∫ ∞
−∞

dt′
∫
A
dx′dy′[ψ+(x′, t′)− ψi(x′, t′)− ψr(x′, t′)]z′=0

· [∂z′gN (x, t;x′, t′)]z′=0 z > 0 (25)
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so that to get the diffracted pulse one has just to solve (25).
Substituting the solution of (25) into (21b) gives the component ψA of
ψ in the illuminated region z < 0.

Remark. One could use the integral equation (3a) with the
boundary conditions

[ψ(x, t)]Σ−A = 0 , [∂z{ψ(x, t)− ψ+(x, t)}]A = 0 (26)

and, in this case, the Green’s function gD on z′ = 0 has the form

[gD(x, t;x′, t′)]z′=0 = (ic/8π3)
∫
Br

ds

∫∫ ∞
−∞

dβdγs−1
z Φ(β, γ, s)sinh(szz)

(27)
with Φ(β, γ, s) still given by (6a) but the situation is a bit harder to
handle because the integral equations in the regions z < 0 and z > 0
are coupled.

4. DIFFRACTION OF RECTANGULAR PULSE
MODULATED SIGNALS

4.1. Solution of the Integral Equation

We apply the approach discussed in the previous section to the
diffraction by an aperture A of a rectangular pulse modulated signal
ψi incident from the region z < 0

ψi(x, t) = f(ct− Zi)[U(ct− Zi)− U(ct− cτ − Zi)] (28)

Zi = x sin θ sinφ + y sin θ cosφ + z cos θ (28a)

The reflected field is according to the Descanes-Snell law

ψr(x, t) = f(ct− Zr)[U(ct− Zr)− U(ct− cτ − Zr)] (29)

Zr = x sin θ sinφ + y sin θ cosφ− z cos θ (29a)

so that on the plane Σ′(z′ = 0), we get

ψ0(x′, t′) = [ψi(x′, t′) + ψr(x′, t′)]z′=0

= 2f(ct′ − Z ′)[U(ct′ − Z ′)− U(ct′ − cτ − Z ′)] (30)

with
Z ′ = x′ sin θ sinφ + y′ sin θ cosφ (30a)

We now prove that the solution of the equation (25) is obtained by
taking inside the aperture

2[ψ+(x′, t′)]A = ψ0(x′, t′)U(x, y ∈ A) (31)
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Substituting (31) into (25) and taking into account (30) give

2ψ+(x, t) = −
∫ ∞
−∞

dt′
∫
A
dx′dy′[ψi(x′, t′) + ψr(x′, t′)]z′=0

· [∂z′gN (x, t;x′, t′)]z′=0 z > 0 (32)

so that one has just to prove that the condition (31) is satisfied by the
integral (32): substituting (12) and (30a) into (32), we get

ψ+(x, t) =
∫
A
dx′dy′

∫ Z′+cτ

Z′
dt′f(ct′ − Z ′)H(x, t;x′, t′) (33)

H(x, t;x′, t′) = (c/8iπ3)
∫
Br

ds exp(sct− sct′)

·
∫∫ ∞
−∞

dβdγ exp[iβ(x−x′) + iγ(y−y′)]cosh(szz) (33a)

and this last expression becomes for z = 0

[H(x, t;x′, t′)]z=0 = δ(t− t′)δ(x− x′)δ(y − y′) (34)

So, according to (33), (34) and using (17):

[ψ+(x, t)]z=0 =
∫
A
dx′dy′δ(x− x′)δ(y − y′)

∫ Z′+cτ

Z′
dt′f(ct′ − Z ′)δ(t− t′)

=
∫
A
dx′dy′δ(x− x′)δ(y − y′)f(ct− Z ′)

· [U(ct− Z ′)− U(ct− cτ − Z ′)]
=f(ct− Z)[U(ct− Z)− U(ct− cτ − Z)]U(x, y ∈ A) (35)

which is the relation (31) written on the action plane. Thus, the
integral (32) gives the field diffracted by the plane aperture in the
shadow region z > 0 and an expression somewhat easier to handle
than (33) is obtained by exchanging the order of integration

ψ+(x, t) = (c/8iπ3)
∫
Br

ds exp(sct)

·
∫∫ ∞
−∞

dβdγ exp[iβx + iγy)cosh(szz)J(β, γ, s) z > 0 (36)

J(β, γ, s) =
∫
A
dx′dy′

∫ Z′+cτ

Z′
dt′f(ct′ − Z ′) exp(−iβx′ − iγy′ − sct′)

(36a)
Some approximations of this analytical solution are needed to obtain
expressions simple enough to make numerical calculations practicable.
We show in the next section on a simple example the kind of difficulties
to be met in calculations.
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4.2. A Simple Example

We consider a rectangular pulse modulated harmonic wave incident
normally on a slit x ∈ (−a, a) in the plane z = 0

ψi(z, t) = exp(ikct− z)[U(ct− z)− U(ct− cτ − z)] (37)

ψr is obtained by changing z into −z in (37) and according to (30)

[ψ0(z′, t′)]z′=0 = 2 exp(ikct′)[U(ct′)− U(ct′ − cτ)] (38)

We suppose in addition that (z, x) is the plane of incidence so that
one has to deal with a 2D-problem and the integral (36) becomes with
sz = (s2 + β2)1/2

ψ+(z, x, t) = (c/4iπ2)
∫
Br

ds exp(sct)
∫ ∞
−∞

dβ exp(iβx)cosh(szz)J(β, s)

(39)

J(β, s)=
∫ a

−a
dx′ exp(−iβx′)

∫ τ

0
dt′ exp(−sct′ + ikx′)

= −2[β(s− ik)]−1 sin(βa)[1− exp(ikcτ − scτ)] (39a)

Taking into account (39a), we may write (39)

ψ+(z, x, t) = χ(z, x, t)− χ(z, x, t; τ) (40)

χ(z, x, t) = (−1/2iπ2)
∫
Br

ds(s− ik)−1I(z, x, s) (40a)

χ(z, x, t; τ) = (−1/4π2) exp(ikcτ)
∫
Br
ds(s−ik)−1 exp(sct−scτ)I(z, x, s)

(40b)
within these integrals

I(z, x, s) =
∫ ∞
−∞

dββ−1 sin(βa) exp(iβx)cosh(szz) (41)

All these expressions are exact but, to discuss their physical content, we
need some approximation of (41). In fact, one is generally interested in
the diffraction pattern far from the slit for large positive z, so neglecting
exp(−szz) that tends to zero reduces the integral (41) to

2I(z, x, s) =
∫ ∞
−∞

dββ−1 sin(βa) exp(iβx)exp(szz) (41a)

with an asymptotic approximation supplied by the method of the
steepest descent [2]: let I1(z) be the integral in which f(β) is analytic
and positive

I1(z) =
∫ ∞
−∞

dβh(β) exp[zf(β)] (42)
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then, for large z > 0

I1(z) ∼ 2 exp[zf(β0)]
∞∑
m=0

Γ(m + 1/2)a2m/z
m+1/2 (42a)

the saddle point β0 is the root of f ′(β) = 0 and Γ the gamma function.
Formulas for the first two coefficients are [2]

a0 = h/(2f ′′)1/2,
a2 = {2h′′ − 2f iiih′/f ′′ + [(f iii

√
5/f ′′

√
6)2 − hiv/2f ′′]h}(2h′′)−3/2

(42b)
where f, h and their derivatives are evaluated at β = β0.

In the integral (41a) f(β) = sz = (s2 + β2)1/2 so that β0 = 0 and
applying (42a) limited to its first term, we get according to (42b)

I(z, x, s) ∼ a(πs/2z)1/2 exp(sz) z ⇒∞ (43)

This approximation which does not depend on x has the drawback to
give no information on the trans- verse spreading of the diffracted pulse
which would require the second term of the expansion (42a). Then,
substituting (43) into (40a,b) gives

χ(z, x, t) = −a(1/2πz)1/2(1/2πi)

·
∫
Br

ds s1/2(s− ik)−1 exp(sct + sz) (44a)

χ(z, x, t; τ) = −a(1/2πz)1/2 exp(ikcτ)(1/2iπ)

·
∫
Br

ds s1/2(s− ik)−1 exp(sct− scτ + sz) (44b)

Assuming ct+ z > 0 and ct− cτ + z > 0, we perform the integration of
(44a,b) on the contour of Fig. 1, both integrals having a pole at s = ik
and a branch point at s = 0. The pole contribution to (44a) is given
by the method of residues

χ1 = −a(ick/2πz)1/2 exp(ikct + ikz)U(ct + z) (45a)

in which the unit step function reminds that this result requires
ct+ z > 0. To get the branch point contribution, we first note that on
the small circle δ of radius ε at the origin |s| � |k| and the Bromwich
integral vanishes when |s| ⇒ 0. Then, on the upper (resp.lower)
line of the barrier along the negative side of the real axis, we write
s = ξ exp(−iπ) (resp. s = ξ exp(iπ)) yielding for the Bromwich integral
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(44a) the two contributions

−(1/2π)
∫ 0

∞
dξ ξ1/2(ξ + ik)−1 exp(−ξct− ξz),

−(1/2π)
∫ ∞
0

dξ ξ1/2(ξ + ik)−1 exp(−ξct− ξz)

summing these two integrals gives the branch point contribution to
(44a)

χ2 = −a(1/2π3z)1/2-(z, t)U(ct + z) (45b)
with

-(z, t) =
∫ ∞
0

dξ ξ1/2(ξ + ik)−1 exp(−iξct− ξz) (46)

Then, according to (45a) and (45b)

χ(z, x, t) = −a(1/2π3z)1/2[(2iπk)1/2 exp(ikct+ ikz)+-(z, t)]U(ct+ z)
(47a)

A similar calculation gives for (44b)

χ(z, x, t; τ) = −a(1/2π3z)1/2[(2iπk)1/2 exp(ikct + ikz)
+ exp(ikcτ)-(z, t− τ)]U(ct− cτ + z) (47b)

Substituting (47a,b) into (40) gives the field diffracted by the slit in
which exp(ikct + ikz) represents the propagation of the incident field
in the shadow region z > 0 while - is the diffracted pulse.

To analyse more closely the diffraction pattern, we look for an
asymptotic approximation of -(z, t) and of -(z, t−τ) when ct+z and
ct− cτ + z are large. In this case, the major part of the integral (46)
will be obtained for values of ξ in the neighborhood of the origin then,
expanding the denominator in ascending powers of ξ, we get

-(z, t) = (1/ik)
∫ ∞
0

dξ
∞∑
n=0

(−1/ik)nξn+1/2 exp[−ξ(ct + z)] (48)

and assuming the uniform convergence of the series making possible
to exchange integration and summation, the term by term integration
gives

-(z, t) = (1/ik)
∞∑
n=0

(−1/ik)nΓ(n + 3/2)(ct + z)−n−3/2 (48a)

Taking the first term only of (48a) the expressions (47a) and (47b)
become

χ(z, x, t) = −a(ik/π2z)1/2[exp(ikct+ ikz)+{2ik(ct+z)}−2/3]U(ct+z)
(49a)
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Figure 1. Bromwich contour on the s-plane.

χ(z, x, t; τ) = −a(ik/π2z)1/2[exp(ikct + ikz) + exp(ikcτ)

· {2ik(ct− cτ + z)−2/3}]U(ct− cτ + z) (49b)

For ct+ z and ct− cτ + z large enough, the second term in the square
bracket of (49a,b) is very small and the contribution of the diffracted
field to the scalar pulse becomes negligible so that the pulse appears as
conveying the image of the slit with a duration τ and a z−1/2 fading.

At the expense of some more calculations, one would obtain in
the same way the diffraction by a slit of a truncated harmonic pulse
incident with an angle θ. To illustrate what happens in this case, we
consider the diffraction of a Dirac pulse

ψi(x, z, t) = δ(ct− x sin θ − z cos θ) (50)

so that according to (30)

[ψ0(x′, z′, t′]z′=0 = 2δ(ct′ − x′ sin θ) (51)

The integral (39) is still valid but the function J(β, s) becomes

J(β, s) =
∫ a

−a
dx′ exp(−iβx′)

∫ ∞
−∞

dt′δ(ct′ − x′ sin θ) exp(−sct′)

= 2c−1(iβ + s sin θ)−1sinh(iaβ + as sin θ) (52)
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Substituting (52) into (39) gives

ψ+(x, z, t) = (1/2iπ2)
∫
Br

ds exp(sct)
∫ ∞
−∞

dβ(iβ + s sin θ)−1

· sinh(iaβ + as sin θ) exp(iβx)cosh(szz)
= χa(x, z, t)− χa(x, z, t) (53)

with

χ±a(x, z, t) = (1/4iπ2)
∫
Br

ds exp(sct± as sin θ)I±a(x, z, s) (53a)

and

I±a(x, z, s) =
∫
Br

dβ(iβ + s sin θ)−1 exp[iβ(x± a)cosh(szz) (54)

For large positive z, one may neglect exp(−szz) and using the first
term of the approximation (42a), we get

I±a(x, z, s) ∼ cosecθs−1/2(2π/z)1/2 exp(sz) z ⇒∞ (55)

Substituting (55) into (54) gives

χ±a(x, z, s) = cosecθ(1/2πz)1/2(1/2πi)
∫
Br
s−1/2 exp(sct + sz ± as sin θ)

(56)
The only singularity of the integrand is a branch point at s = 0 so,
still using the contour of Fig, 1, we get easily

χ±a(x, z, s) = cosecθ(1/2πz)1/2(ct + z ± a sin θ)−1/2U(ct + z ± a sin θ)
(56a)

In this case also one should have to use the second term of (42a) to get
the transverse spreading of the Dirac pulse.

These results show that the asymptotic approximation (42a)
simplifies notably calculations; it should be possible for instance to
get with only some extra work the diffraction pattern for a rectangular
pulse modulated harmonic wave incident on a rectangular aperture.

5. DISCUSSION

Signals used in communication technology have a finite duration and
they can be described by expressions similar to (18). Then, their
diffraction at plane apertures resorts in the present approach to Eq.
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(36). And, one has to handle the calculation of this integral that we
write

ψ+(x, t) = (c/2iπ)
∫
Br

ds exp(sct)φ(x, s), z > 0 (57)

with

φ(x, s) =
∫∫ ∞
−∞

dβdγ exp(iβx + iγy)cosh(szz)J(β, γ, s) (58a)

J(β, γ, s) = (1/4π2)
∫
A
dx′dy′

∫ Z′+cτ

Z′
dt′f(ct′−Z ′) exp(−iβx′−iγy′−sct′)

(58b)
so that the calculation of ψ+ can be made in three steps. One has first
to perform the integral (58b) whose evaluation depends strongly on the
function f and on the form of the aperture A. Fortunately, in present
day technology, f can be represented by a truncated harmonic function
or by a sequence of step functions making rather easy the calculation
of the t′-integral. So, one is left with the integral on A and calculations
are simplified when curvilinear coordinates can be chosen so that one
of the coordinate lines coincides with the boundary of the aperture. In
addition, when f is a step function, one has a result similar to that
obtained for Fraunhofer diffraction [3]: let x′, y′ denote the curvilinear
coordinates and A1 be an aperture such that the extension of A1 in a
particular direction is µ times that of A, then:

J1(β, γ, s) = µJ(µβ, γ, s) (59)

in which J1 is the function J for the aperture A1. So the integral (58b)
for an aperture A with the form of an ellipse or a parallelogram may
be obtained from that of a circle or a rectangle respectively.

As a second step, one has to perform the integral (58a) and if
one is only interested in the diffraction pattern far from the aperture,
one may use an asymptotic approximation for large z > 0. Neglecting
exp(−szz) and applying for instance (42a) limited to the first term
of (42b) successively to the integrals on γ and on β, we get since the
saddle points are at β0 = 0, γ0 = 0

2φ(x, s) ∼ (2π/z)1/2
∫ ∞
−∞

dβ(s2 + β2)1/2J(β, 0, s) exp(iβx)

· exp[z(s2 + β2)1/2]
∼ (πs/z)J(0, 0, s) exp(sz) z ⇒ +∞ (60)

but, as previously noticed, this approximation gives no information on
the transverse spreading of the diffracted pulse which would require
the second term of (42b) with more intricate calculations.
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Finally, one is left with the Bromwich integral (57) which becomes
with the approximation (60)

ψ+(x, t) = (c/2πz)
∫
Br

sdsJ(0, 0, s) exp(sct + sz) z ⇒ +∞ (61)

which presents no particular difficulty using a convenient contour as
discussed in Section 4.

The integrals (57) and (58a,b) could also be numerically
approximate which seems to be the only possibility for an arbitrary
aperture A but this numerical approach has still to be made. One
must note the existence of powerful codes to perform the inverse of the
Laplace transform [4].

This work is made in the spirit of the traditional approach
of deriving, sometime approximate, solutions for idealized problems
rather than producing numerical solutions for more realistic problems.
Such a position could seem to be out of fashion at a time when to
run and assess the accuracy of computer codes is a large part of the
duties of most engineers, however running software is not necessarily
the best way of understanding the basics of any subject. But now that
theoretical formulae exist, the important work to implement numerical
computations has still to be made.
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